
Stanford University

STATS 202: Data Mining and Analysis

Study of the Efficacy of an Experimental Drug on
Schizophrenia Treatment

Authors’ Names:

Arie N. Arya
Lam P. Bach

Authors’ Email:

ana4718@stanford.edu
riddle95@stanford.edu

Group Instructor: Linh Tran

Final Project Report
August 13, 2020

Stanford University Final Report

Contents

1 Abstract 3

2 Treatment effect 4
2.1 Data Pre-processing . 4
2.2 Statistical Testing . 4
2.3 Comparison with Existing Medical Treatment . 5

3 Patient segmentation 6
3.1 Naive Clustering Implementation and its Issues . 6
3.2 PCA and K-means Clustering . 6

3.2.1 Data Pre-processing . 6
3.2.2 Observing Correlation . 7
3.2.3 Performing PCA . 7
3.2.4 K-means Clustering . 7
3.2.5 Analyzing the Clusters and Segmenting the Population 7

4 Forecasting 9
4.1 Data Pre-processing . 9
4.2 Creating and Defining RNN Model . 10
4.3 Training the RNN Model . 11
4.4 RNN Model Performance . 11

5 Binary classification 12
5.1 Data Pre-processing . 12
5.2 Logistic Regression . 12
5.3 Random Forests . 13
5.4 Gradient Boosting . 13

6 Appendix 14
6.1 Figures and Diagrams . 14
6.2 Part 1 Code: Treatment Effect . 22
6.3 Part 2 Code: Patient Segmentation . 24
6.4 Part 3 Code: Forecasting . 28
6.5 Part 4 Code: Binary Classification . 32

References 34

2

Stanford University Final Report

1 Abstract

The objective of this report is to analyze the efficacy of an anonymized drug treatment on treating patients
with schizophrenia, and to predict the progress and outcome of similar patients throughout the course of the
treatment program. This report will use both R and Python to conduct statistical analysis and modelling.

The patient studies are conducted by randomly splitting patients into ”Treatment” and ”Control” groups,
where treatment groups are given the experimental drug for treating the disorder, whilst the control group is
given the standard and accepted medical treatment in order to compare its effectiveness.

The measure used to determine the severity of patients with schizophrenia is the PANSS (Positive and
Negative Syndrome Scale). This is a numeric scale which measures 30 related symptoms in a patient, each with
a severity score of between 1-7; 7 being the most extreme [3]. The 30 symptom scores measured are shown
below.

In conjunction with this analyzing the drug’s efficacy, as the PANSS measure conducted are oftentimes con-
tradictory and inconsistent (i.e. one measure may indicate psychosis where another indicates normality), some
readings will need to be flagged for re-evaluation. This report will discuss methods to determine whether or not
a particular PANSS interview session should be investigated for its reliability.

This report will be broken up into four main sections:

• Treatment Effect

• Patient Segmentation

• Forecasting

• Binary Classification

Treatment Effect analyzes the overall effectiveness and efficacy of the anonymized drug in treating patients
with schizophrenia. Patient Segmentation attempts to find and categorize similar patients with the disorder,
and observe the reactions of these different groups to the drug. Forecasting looks at different models to make
projections of the overall PANSS score of patients on their 18th week of treatment. Binary Classification
analyzes patterns in erroneous PANSS assessment sessions in an attempt to reliably automate the process of
flagging inconsistent results for re-evaluation.

3

Stanford University Final Report

2 Treatment effect

This section will use R to analyze the overall performance of the anonymized drug treatment on treating patients
with schizophrenia by observing their PANSS Score over the course of their treatment program. Here, the
patients will be segmented into their respective ”Control” and ”Treatment” group to compare the effectiveness
of the drug to the accepted standard medication. The code for this section can be observed in section 6.2 of
the Appendix.

In order to reduce the effect of data snooping / dredging, we have decided to conduct a null hypothesis test
a-priority to analyzing or inspecting the data-set. This test will determine if there exists a statistical relationship
of the anonymized drug on treating schizophrenia over a period of time.

In particular, the null hypothesis test will be carried out with the predictor ”V isitDay” on patients in the
treatment group, and a linear model will be fitted. The general equation for this linear model is:

PANSS Total = β0 + β1V isitDay (1)

The corresponding null hypothesis is then given as:

H0 : β1 = 0 (2)

With the alternative hypothesis being:
Ha : β1 6= 0 (3)

Should the drug be ineffective in treating schizophrenia, the p-value of this predictor should remain above the
typical threshold 0.05, indicating the PANSS score remains relatively constant in the course of the program (i.e.
treatment has no effect). Moreover, should the null hypothesis be rejected, further analysis will be performed
to see whether or not the PANSS score worsens throughout the program, which will determine the overall
treatment effect of the drug.

2.1 Data Pre-processing

In order to conduct the statistical test, the data from all studies A to D will be merged into a combined study.
This is necessary to reduce the overall bias of the data-set as it becomes more representative of the whole
population, including the study of patients from different countries. This is achieved by the code segment
below:

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D)

Next, as we would like to conduct statistical inference on patients in the treatment group, the control group
patients must be neglected.

df = filter(df, TxGroup == "Treatment")

Selecting only the predictor ”V isitDay” and the response ”PANSS Total”, an initial scatter-plot is created
to observe the general relationship of the data. This is displayed in Figure 1.

By observation of the plot, it is clear that there is a consistent and general drop in the PANSS score of the
treatment group patients throughout the treatment program.

2.2 Statistical Testing

A linear model shown in equation 1 can be fitted to the processed data to conduct the null hypothesis test
defined in the beginning of this section. This is achieved by the code below:

visitDay = df$VisitDay

panssTotal = df$PANSS_Total

linear_fit = lm(panssTotal~visitDay)

print(summary(linear_fit))

4

Stanford University Final Report

The summary obtained from the fit is shown below:

By observation of the p-value of the ”V isitDay” variable, as it is considerably lower than the threshold 0.05,
we can safely reject null hypothesis. This indicates that the PANSS score of the patients in the treatment
group does vary throughout the treatment program.

Further, the coefficient β1 of the ”V isitDay” variable is obtained as -0.119758. This indicates that on
average, the PANSS score of patients in the treatment group reduces by 0.199758 every day, which is a desirable
treatment effect.

The plot of the linear model is shown in Figure 2. Additionally, plots of all symptoms of treatment patients
throughout the program is shown in Figure 3. This shows a general reduction and improvement in the symptom
score (which ranges from 1-7) of the patient.

In general, it is observed that the symptom scores reduce (improves) throughout the course of the program,
indicating a positive effect of the treatment drug in treating the patients.

2.3 Comparison with Existing Medical Treatment

Although the findings thus far suggests that the drug is effective in treating the patients, it is also important to
make comparison with existing and accepted medication to compare their performance. Using the same method
as seen previously, we can select patients under the control group, and construct a linear model. The result
is shown in Figure 4.
The corresponding intercept and gradient obtained in this linear model is:

As can be seen, the accepted standard medication for treating schizophrenia on average sees an improvement
in patients’ PANSS score of 0.1269 per day, compared to 0.1198 for the anonymized drug. In conclusion, although
the anonymized drug has an overall positive effect on treating patients with schizophrenia, if the interpretation
of the term effectiveness refers to a possible replacement of standard medication with the experimental drug,
then evidence from this analysis does not strongly support this case.

5

Stanford University Final Report

3 Patient segmentation

This section explores techniques and methods to segment the population of schizophrenia patients into subgroups
in order to study how the proposed treatment affects them. In particular, the clustering method used in this
section is the k-means clustering algorithm, where the optimum k value is obtained by the elbow point method.
Further, the clustering will only be performed on the baseline patient data, i.e. their corresponding data on the
first day (day 0) of visit, as this captures their condition prior to any treatment effect. The code for this section
can be observed in section 6.3 of the Appendix.

3.1 Naive Clustering Implementation and its Issues

A very naive implementation of a clustering method is to look at all 30 PANSS symptoms and applying k-
means clustering directly. However, the underlying issue with such a method is its high dimension. As the
dimension of our problem grows, the data becomes more and more sparsely spread in space, and as a result
k-means becomes less effective at distinguishing and thus grouping similar points (especially through the use of
Euclidean distance). This is the so-called the curse of dimensional problem.

Alternatively then, a possible clustering method would be to look at the three categories of the PANSS
score separately; that is, the Positive, Negative, and the General Psychopathology Scale. First, after
totalling all of the columns corresponding to each of the three symptom categories, a general 3D scatter-plot
is obtained, shown in Figure 5.Afterwards, the elbow method is performed, and an optimum k value of 5 is
obtained as the elbow point (though in this case, the elbow point itself is rather ambiguous). This is shown in
Figure 6.Performing k-means at a k = 5 gives us 5 clusters, and is illustrated in Figure 7 and Figure 8.

However, the key drawback in this method is that it assumes that the symptoms in each category are highly
correlated, and can therefore be generalized as their joint sum. This, as will be explained in the next section, is
in fact not a sensible assumption. By combining all symptoms into their corresponding categories, information
about those individual symptoms are lost, and therefore meaningful clusters that may have arisen between
specific symptoms from the different categories are also not possible. For this reason, the approach that is most
reliable is to first perform PCA (Principal Component Analysis) before performing k-means clustering.

3.2 PCA and K-means Clustering

The general idea behind PCA is to reduce the dimensional of our data-set by combining highly correlated
features and projecting the result into a lower dimension. This is because removing highly correlated features
tend to sustain the information in our system whilst simultaneously reducing its dimensions, and therefore our
k-means algorithm will suffer less from the curse of dimensional problem.

3.2.1 Data Pre-processing

Firstly, the data from all studies A-E are combined so as to reduce the overall bias of our analysis.

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df_E = LoadData(paste(DATA_PATH ,"/Study_E.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D, df_E)

Next, scale the dataframe to 0 mean and unit variance and select only the rows corresponding to VisitDay 0 as
well as the columns which corresponds to the 30 symptom scores,

Select rows with day of visit 0

df = filter(df, VisitDay == 0)

Select columns with symptom scores

df = subset(df, select = -c(Study , Country , SiteID , RaterID , AssessmentID , TxGroup ,

LeadStatus , VisitDay , PANSS_Total))

Scale the dataframe

df = data.frame(scale(df))

6

Stanford University Final Report

3.2.2 Observing Correlation

After pre-processing the data, we can immediately observe the correlation between each of the 30 symptom
scores. The resulting illustration of the correlation matrix is shown in Figure 9.

As can be seen, some of the symptoms are very highly correlated to one another (e.g. N1 and N4), and thus
jointly contributes little additional information to our overall data-set. The purpose of PCA then is to obtain
the highly uncorrelated principal components out of our features, which can then be used to perform clustering.

3.2.3 Performing PCA

Applying PCA to our pre-processed data-set using the prcomp function from the stats package in R, we can
observe each principal components and the proportion of the total variance of our data-set that they represent.
This is shown in Figure 10.

For this analysis, we have chosen the principal components which represents slightly above 60% of the total
variance of our original data-set. This is achieved by the code below:

Choose the number of PC that reaches 60% of total variance

pc <- prcomp(df)

var_list = summary(pc)$importance [2,]

pc_length = 0

cur_var_proportion = 0

for(i in 1: length(var_list)){

cur_var_proportion = cur_var_proportion + var_list[i]

if(cur_var_proportion >= 0.60){

pc_length = i

break

}

}

From our data-set, the number of principal components which represent just over 60% of the total variance of
the original data-set is 9. The plot of the correlation matrix between all 9 of these principal components is
shown in Figure 11.

By observing the above correlation matrix, we can see that there is very little linear correlation between
each principal components, meaning it retains a high degree of information whilst minimizing its dimensional.

3.2.4 K-means Clustering

Next, after applying PCA, we can apply k-means clustering. First, an elbow method is used to determine an
optimum k-value. The illustration of this method can be observed in Figure 12. Though the elbow point again
is quite ambiguous, a k value of 5 is quite appropriate as the gradient drops off marginally.
Finally, applying k-means clustering with a k value of 5, we obtain 5 overall clusters as illustrated in Figure 13.

3.2.5 Analyzing the Clusters and Segmenting the Population

Note, PCA alone is useful for allowing us to capture meaningful clusters, but the value of its centroid or its
points is insubstantial since our original feature space has been transformed. The clusters obtained from this
method uniquely assigns each PatientID to a specific cluster. Using these Patient ID’s, we can observe the 30
symptom scores of each patient within each cluster. The mean value of each of the 30 symptom scores in each
cluster is summarized in Figure 14. Note that the data was originally scaled to 0 mean and unit variance. Hence,
a mean symptom score of around 0.8 is considered high, a mean symptom score of 0 is considered moderate,
and a mean symptom score of -0.8 is considered low.
From this result, we can extract interesting properties in each cluster.

• Cluster 1: fairly high P values, fairly low N values, moderate G values.

• Cluster 2: relatively high P values, moderate N values, moderate G values.

• Cluster 3: fairly low P values, fairly low N values, fairly low G values.

• Cluster 4: moderate P values, very high N values, high G values.

7

Stanford University Final Report

• Cluster 5: very low P values, moderate N values, fairly low G values.

Through these generalizations of the clusters, we can make a general segmentation of the population:

• Cluster 1 Patients: suffer from a general distortion of normal functions, little diminution of normal
functions, and a moderate degree of general psychosis

• Cluster 2 Patients : suffer from a clear distortion of normal functions (i.e. hallucinations and delusions),
fair loss of normal functions, and a moderate degree of general psychosis

• Cluster 3 Patients: General lack of distortion and diminution of normal functions, and general signs of
normality

• Cluster 4 Patients: slight distortion of normal functions, but a clear loss of normal functions and strong
evidence of general psychosis

• Cluster 5 Patients: Very little signs of general psychosis or distortion of normal functions, but some
degree of diminution in normal functions.

Out of the five clusters, cluster 2 and cluster 4 are generally patients who suffer severely from schizophrenia,
whereas cluster 3 and cluster 5 have patients whose severity is only slight to moderate.

Of course, more meaningful interpretations of the clusters can be made by individually inspecting each of
the 30 symptom scores and how they may relate between patients in real life. However, this would likely require
a separate study on its own.

8

Stanford University Final Report

4 Forecasting

Kaggle username: Arie Arya, Public Leaderboard Rank: 12
This section concerns the forecasting / projection of the 18-th week PANSS score of patients in study E. For
this particular problem, we have decided to use RNN (Recurrent Neural Network) with Python (using the Keras
library) in order to predict the 18-th week PANSS score of different patients. RNN is a class of neural networks
typically used to predict sequential or time series data, e.g. predicting stock prices in the next 24 hours, through
the use of the LSTM (Long Short-Term Memory) architecture [2]. As with previous sections, modelling is done
on the combined study A-D to reduce the overall bias of the problem.

4.1 Data Pre-processing

Before creating and training the RNN model, the raw data must be pre-processed to properly feed into the
neural network.

Firstly, feature selection must be performed to choose the most relevant features for the problem. For
this particular model, the features AssessmentID, SiteID, Study, RaterID, and LeadStatus are neglected as it
unnecessarily increases the dimension of the problem without adding significant information gain to the model.

Additionally, the dataframe must be normalized to give the same weighting / significance to each feature
and allow faster convergence for the gradient descent process on the neural network backpropagation stage.
From testing the model and optimizing the RMSE, it can be seen that minmax normalization is preferred over
standardization.

df_scaled = (inp_df -inp_df.min ())/(inp_df.max()-inp_df.min())

Finally, the final feature transformation that needs to be performed is to apply one-hot-encoding to the
categorical features TxGroup and Country. This allows the categorical features to be represented by multi-
ple separate feature columns for each category, e.g. ”Treatment” and ”Control” for TxGroup, and ”USA”,
”Russia”, ”India”, etc for Country. A patient who falls into one of the categories of the categorical feature
will have a 1 in the new respective one-hot-encoded column, whilst a 0 everywhere else.

Perform One -Hot Encoding on Country and TxGroup

label_encoder = LabelEncoder ()

country_encoded = label_encoder.fit_transform(combined_df[’Country ’]. to_numpy ())

txgroup_encoded = label_encoder.fit_transform(combined_df[’TxGroup ’]. to_numpy ())

country_ohc = to_categorical(country_encoded)

txgroup_ohc = to_categorical(txgroup_encoded)

merged_array = np.hstack ((country_ohc , txgroup_ohc))

Next, the input (features) and output (response) must be separated from the main data. Here, the input
features includes all individual symptom scores P1, P2, ..., G16, as well as VisitDay and TxGroup. The output
responses are the 30 symptom scores P1, P2, ..., G16 at the end of the patient assessment (presumed to be the
18-th week values). The final 18-th week PANSS score is then the sum of the output symptom scores. The
input to the RNN model is a 3-dimensional matrix, where each observation is a 2-dimensional numpy array
which represents the time-series sequence of a patient’s symptom scores. Note, for training the model, only
patients who has reached the 18-th week mark (at least day 126) are used, whilst the others are neglected. An
example of an input observation and its corresponding 2-d numpy representation is shown in the figure below.

9

Stanford University Final Report

Note at this stage in the actual code, the numpy matrix would have been normalized and also contains the new
one-hot-encoded features, but this is neglected here for convenience of explanation and demonstration. This
input-output structure, along with the LSTM RNN model, allows the neural network to learn the sequential
pattern behind the patients’ symptom scores throughout the treatment program, as well as learning the pattern
of a particular patient’s day of visit to the clinic.

In addition to this, zero-padding must be performed due to the varying number of PANSS clinical visits of
each patient, which results in inconsistent numpy matrix dimensions. For example, one patient may have done
sixteen PANSS interviews, whilst another patient may have only done five. This is accomplished by simply
filling an array of 0’s at the beginning of the input matrix.

4.2 Creating and Defining RNN Model

The RNN model is created using the Keras library in Python. It is made with a Sequential model with an
input layer, a Bidirectional LSTM layer with a tanh (hyperbolic tangent) activation function, as well as an
output dense layer made of 30 neurons (i.e. the 30 symptom scores). Tanh proved to perform better (smaller
test error) than the more common activation function ReLU (Rectified Linear Unit) and suffers little from the
vanishing gradient problem as our neural network is not sufficiently deep, and hence still converges quickly. A
bidirectional layer comprises of two hidden layers, a backward and a forward layer, whose output is combined
and sent to the next layer (in this case a dense output layer). In essence, it allows our input to be run in two
ways, from the past to the future as well as the future to the past in order to extract more specific features of
our sequential data [1]. Figure 15 shows the general bidirectional RNN architecture implemented in this model.

def createRNN(x_train , y_train , epoch):

model = Sequential ()

model.add(Bidirectional(LSTM(30, activation=’tanh’), input_shape =(x_train.shape[1:])))

30 PANSS symptom scores , no activation function

model.add(Dense(y_train.shape[1]))

model.compile(loss="mse", optimizer="adam", metrics =[

tf.keras.metrics.RootMeanSquaredError ()])

model.fit(x_train , y_train , epochs=epoch , batch_size=5, verbose=1, validation_split=0.1)

return model

10

Stanford University Final Report

4.3 Training the RNN Model

The RNN model, as mentioned previously, is trained using the patient data whose visit day is at least 126 (i.e.
they have potentially reached their 18-th week assessment). Each observation is a 2-dimensional matrix whose
rows represent subsequent PANSS assessment, allowing the model to learn patterns in its sequence. The output
is the 30 individual PANSS symptom scores at the end of the 18-th week assessment.

model = createRNN(x_mtx , y_mtx , 80)

ypred = model.predict(x_applied_mtx)

Here, training is performed with an epoch of 80 (to prevent overfitting), and a batch size of 5 (observe createRNN
function previously), meaning the model will look at 5 input observations before updating its parameters through
back-propagation.

4.4 RNN Model Performance

After obtaining the corresponding predictions of the 18-th week symptom scores of patients in study E, any
scores that are less than 1 or greater than 7 are rounded to 1 and 7 respectively. Afterwards, the PANSS scores
are summed and rounded to give the final PANSS score prediction on the 18-th week. The result ypred is then
saved and stored on a csv file.

ypred[ypred < 1] = 1

ypred[ypred > 7] = 7

ypred = np.sum(ypred , axis=1)

ypred = np.round(ypred , 0)

y_result = pd.DataFrame(data=ypred , columns =["PANSS_Total"])

y_result.to_csv(r’result.csv’, index=False)

The overall model performs relatively well on the study E patient data, giving an RMSE result of 6.29518. The
primary issue in using an RNN model for this scenario is the missing and inconsistent time-spaced data. The
day of visit in each observation sequence is different, and therefore the RNN model will find it more difficult to
extract patterns in the sequence. e.g. patient X may see a significant drop in PANSS score between assessments
than patient Y, but this may be because patient X skipped many weeks before another assessment, whilst
patient Y attends weekly assessments. In addition, the existence of inconsistent PANSS assessment that is
either flagged / assigned to CS (as opposed to passed) makes the training data more noisy, and hence the
prediction may also diverge more from the true PANSS score.

11

Stanford University Final Report

5 Binary classification

Kaggle username: Arie Arya, Public Leaderboard Rank: 20
This section concerns the classification of patient assessments in study E using R into either the passed or
flagged / assign to CS categories, respectively represented by class 0 and class 1 in the model. In particular,
three common classification models is experimented upon: Logistic Regression, Random Forests, and Gradient
Boosting. For each classification method, a probability of a patient assessment being classified to class 1 (flagged
/ assign to CS) is obtained. For the purposes of evaluation and optimization of the models, given this probability
is greater than 0.5, then a class of 1 is assigned to the assessment, otherwise a class of 0. This will then be
compared to the true class in the train or test set to evaluate its performance.

5.1 Data Pre-processing

Data pre-processing for binary classification in R is relatively straightforward. Firstly, the four studies must
be merged into one to reduce the bias of our model. Additionally, the LeadStatus column categories must be
transformed, where categories ”AssigntoCS” and ”Flagged” are combined into class 1, and category ”Passed”
into class 0. Lastly, feature selection must be performed to select relevant features for this problem, and the
categorical feature column TxGroup must be changed into factor type to allow it to be treated as a categorical
feature in the model.

Set Flagged or CS as 1, Passed to 0

df$LeadStatus[df$LeadStatus == "Assign to CS"] = 1

df$LeadStatus[df$LeadStatus == "Flagged"] = 1

df$LeadStatus[df$LeadStatus == "Passed"] = 0

df = subset(df, select=-c(Study , PatientID , Country , SiteID , RaterID , AssessmentID))

df$TxGroup = as.factor(df$TxGroup)

In addition, the data is subsequently split into training and test sets at a 80:20 ratio for model evaluation and
optimization.

smp_size = 0.8*nrow(df)

train_index = sample(nrow(df), smp_size)

data.train = df[train_index ,]

data.test = df[-train_index ,]

5.2 Logistic Regression

Logistic Regression is a classification model obtained by passing a linear model through a sigmoid function,
thus bounding its value between 0 and 1. This bound allows for convenient representation of the probability of
a certain class in a binary classification problem, shown in the equation below:

Pr =
eβ0+β1x+...

1 + eβ0+β1x+...
(4)

Here, the β coefficients are optimized through the training process using the glm() function in R.

Fit using Logistic Regression

log_fit = glm(as.factor(LeadStatus) ~., data=data.train , family = binomial)

log_prob = predict(log_fit , data.test , type="response")

log_pred = ifelse(log_prob > 0.5, 1, 0)

print(table(data.test$LeadStatus , log_pred))

log_acc = sum(data.test$LeadStatus == log_pred)/nrow(data.test)

print(paste("Logistic Regression accuracy: ", log_acc))

The corresponding test accuracy, i.e. the proportion of correctly predicted classes, obtained using Logistic
Regression by setting the prediction to the most probable class is 0.76563245823389. This performs compar-
atively worse than both Random Forest and Gradient Boosting.

12

Stanford University Final Report

5.3 Random Forests

Random forest is a classification algorithm which utilizes a form of bagging on uncorrelated trees. This is
achieved by selecting only a certain number of features to consider in each split of the bagged decision tree (i.e.
the hyper-parameter mtry in R), hence making it unlikely that any two bagged decision trees are exactly the
same and are therefore uncorrelated. Random forest reduces the tendency of decision trees from over-fitting to
the training data.

Firstly, it is important to optimize the mtry hyper-parameter of the random forest. Here, we can iterate
mtry over the total number of feature columns and observe the test accuracy of our decision tree.

Plots the test accuracy against mtry for Random Forest

num_pred = ncol(data.train)-1

test_accuracy = 1:num_pred

for(i in 1:num_pred){

print(paste("iteration: ", i, "/ ", num_pred))

rf_fit = randomForest(as.factor(LeadStatus) ~., data=data.train ,

mtry = i, ntree =1000)

rf_prob = predict(rf_fit , data.test , ntree =1000, type="prob")

rf_prob = rf_prob[,2]

rf_pred = ifelse(rf_prob > 0.5, 1, 0)

rf_acc = sum(data.test$LeadStatus == rf_pred)/nrow(data.test)

print(paste("rf accuracy: ", rf_acc))

test_accuracy[i] = rf_acc

}

plot (1: num_pred , test_accuracy , type="b", xlab="mtry", ylab="Test Accuracy")

Figure 16 shows the resulting plot of test accuracy against the mtry values. As can be observed, an mtry value
of 7 provides the highest test accuracy, and is therefore used for the final RF model. The corresponding Random
Forest test accuracy obtained by setting the prediction to the most probable outcome is 0.839379474940334.
Interestingly, even as the accuracy is significantly higher than that of Gradient Boosting (next section), its
log-loss performance on the study E patient data is considerably worse. This may indicate that the probability
values may possibly be more skewed and inaccurate.

5.4 Gradient Boosting

Gradient boosting performs most optimally on study E patient data compared to Logistic Regression and
Random Forest. Gradient boosting is an algorithm which creates a strong prediction model with notably lower
bias from an ensemble of weak learners, most typically decision trees. Each subsequent weak learner is obtained
through fitting on the residual of the ensemble of the previous weak learners, and the final model is the sum of
the weak learners and its corresponding learning rates. For R, gradient boosting can be performed using the
gbm function.

Fit using Boosting

boost_fit = gbm(LeadStatus ~., data=data.train , cv.folds=10, bag.fraction = 0.75,

distribution="bernoulli", n.trees =1000, shrinkage =0.05)

boost_prob = predict(boost_fit , data.test , n.trees = 1000, type = "response")

boost_pred = ifelse(boost_prob > 0.5, 1, 0)

print(table(data.test$LeadStatus , boost_pred))

boost_acc = sum(data.test$LeadStatus == boost_pred)/nrow(data.test)

print(paste("Boost accuracy: ", boost_acc))

Here, the distribution is kept as Bernoulli to restrict the output between 0 and 1, and the shrinkage parameter
is kept relatively low to allow the model to learn more slowly, hence capturing more specific features of the
distribution. Upon training and evaluating the model on study A-D patients, the corresponding test accuracy
is obtained as 0.781837708830549. Though this test accuracy is notably lower than that of random forest,
its log-loss performance on study E patients shows considerable improvement (0.61643), suggesting its output
probabilities is more accurate and thus more closely resembling the true data distribution.

13

Stanford University Final Report

6 Appendix

6.1 Figures and Diagrams

Figure 1: Patients’ PANSS score in the treatment group throughout the program

Figure 2: Linear Fit on pre-processed data

14

Stanford University Final Report

Figure 3: Patients’ 30 symptom scores in the treatment group throughout the program

15

Stanford University Final Report

Figure 4: Linear Fit on Control Group Patients

Figure 5: Scatterplot of patient’s P, N, and G scores

16

Stanford University Final Report

Figure 6: Elbow Method on the 3D dataset

Figure 7: Clusterplot of 3D dataset

Figure 8: Different visualizations of the 3D Clusterplot

17

Stanford University Final Report

Figure 9: Correlation Matrix between 30 PANSS symptoms

Figure 10: Principal Components and their Proportion of Total Variance

18

Stanford University Final Report

Figure 11: Correlation Matrix of the first 9 Principal Components

Figure 12: Elbow Method on PCA dataset

19

Stanford University Final Report

Figure 13: Cluster Illustration from the 9 Principal Components

Figure 14: Mean symptom scores of each cluster C1, C2, C3, C4, and C5

20

Stanford University Final Report

Figure 15: Bidirectional RNN Architecture

Figure 16: Random Forest Test Accuracy vs. mtry

21

Stanford University Final Report

6.2 Part 1 Code: Treatment Effect

suppressPackageStartupMessages ({

library(logging)

library(tidyverse)

})

#’ The width and height of exported plots.

FIGSIZE = c(1000, 1000)

DATA_PATH = "..."

LoadData <- function(data_path , verbose=TRUE) {

stopifnot(file.exists(data_path))

if (verbose)

loginfo(sprintf("\tLoading %s", data_path))

data <- read.csv(data_path)

return (data)

}

Part1TreatmentGroup <- function (){

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D)

Select only the patients in the treatment group

df = filter(df, TxGroup == "Treatment")

Select the useful columns

df = df[c("VisitDay", "PANSS_Total")]

print(head(df , 5))

Print out the Scatterplot

visitDay = df$VisitDay

panssTotal = df$PANSS_Total

png(paste(DATA_PATH , "/Part 1/Part1Treatment.png", sep=""), width=FIGSIZE [1],

height=FIGSIZE [2])

plot(x = visitDay , y = panssTotal , main="PANSS Total vs. Day for Treatment Group",

xlab="Day of Visit", ylab="PANSS Total", col="dodgerblue2")

Obtain a Linear Fit

linear_fit = lm(panssTotal~visitDay)

print(summary(linear_fit))

abline(linear_fit , col="red")

dev.off()

Print the gradient of the Regression Line

print(coef(linear_fit))

}

Part1ControlGroup <- function (){

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D)

print(head(df , 5))

Select only the patients in the control group

22

Stanford University Final Report

df = filter(df, TxGroup == "Control")

Select the useful columns

df = df[c("VisitDay", "PANSS_Total")]

print(head(df , 5))

Print out the Scatterplot

visitDay = df$VisitDay

panssTotal = df$PANSS_Total

png(paste(DATA_PATH , "/Part 1/Part1Control.png", sep=""), width=FIGSIZE [1],

height=FIGSIZE [2])

plot(x = visitDay , y = panssTotal , main="PANSS Total vs. Day for Control Group",

xlab="Day of Visit", ylab="PANSS Total", col="dodgerblue2")

Obtain a Linear Fit

linear_fit = lm(panssTotal~visitDay)

print(summary(linear_fit))

abline(linear_fit , col="red")

dev.off()

Print the gradient of the Regression Line

print(coef(linear_fit))

}

Part1TreatmentGroupCombinedPlots <- function (){

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D)

Select only the patients in the treatment group

df = filter(df, TxGroup == "Treatment")

Select the corresponding columns

visitDay = df$VisitDay

Loop over the 30 symptoms

png(paste(DATA_PATH , "/Part 1/Part1TreatmentCombinedPlots.png", sep=""), width=FIGSIZE [1],

height=FIGSIZE [2])

par(mfrow=c(5, 6))

for (i in 0:29){

symptom_score = df[,9+i]

plot(x = visitDay , y = symptom_score , xlab="Day of Visit", ylab=colnames(df[9+i]),

col="dodgerblue2", las =1)

}

dev.off()

}

23

Stanford University Final Report

6.3 Part 2 Code: Patient Segmentation

suppressPackageStartupMessages ({

library(logging)

library(tidyverse)

library(factoextra)

library(cluster)

library("scatterplot3d")

library(car)

library(rgl)

library(FactoMineR)

library(corrplot)

})

#’ The width and height of exported plots.

FIGSIZE = c(1000, 1000)

DATA_PATH = "..."

LoadData <- function(data_path , verbose=TRUE) {

stopifnot(file.exists(data_path))

if (verbose)

loginfo(sprintf("\tLoading %s", data_path))

data <- read.csv(data_path)

return (data)

}

Segmentation by 30 PANSS symptoms

Part2SegmentationBy30Symptoms <- function (){

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df_E = LoadData(paste(DATA_PATH ,"/Study_E.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D)

Select only readings with day of visit 0

df = filter(df, VisitDay == 0)

Select the useful columns

df = subset(df, select = -c(Study , Country , SiteID , RaterID , AssessmentID ,

TxGroup , LeadStatus , VisitDay , PANSS_Total))

Remove duplicate rows with the same PatientID (multiple assessments on same day)

df = df[!duplicated(df$PatientID),]

rownames(df) <- df$PatientID

df$PatientID <- NULL

df = scale(df)

Find optimum k with Elbow Method

km.elbow = fviz_nbclust(df, kmeans , method = "wss") + geom_vline(xintercept = 4,

linetype = 2)

print(km.elbow)

Find optimum k with Silhouette Method

km.silh = fviz_nbclust(df, kmeans , method = "silhouette")

print(km.silh)

Let us use k = 2. Iterate

opt.km_result = kmeans(df , 2, nstart = 25)

24

Stanford University Final Report

min_wss = as.numeric(unlist(opt.km_result [5]))

print(typeof(min_wss))

for(i in 1:20){

curr.km_result = kmeans(df, 2, nstart = 25)

curr_wss = as.numeric(unlist(curr.km_result [5]))

if(curr_wss < min_wss){

opt.km_result = curr.km_result

min_wss = curr_wss

}

}

print(opt.km_result)

fviz_cluster(opt.km_result , data = df)

}

Segmentation by 3 PANSS Categories

Part2SegmentationBy3Categories <- function (){

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df_E = LoadData(paste(DATA_PATH ,"/Study_E.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D, df_E)

Select only readings with day of visit 0

df = filter(df, VisitDay == 0)

Obtain columns based on sum of symptoms in each category

P_Total <- df$P1+df$P2+df$P3+df$P4+df$P5+df$P6+df$P7

N_Total <- df$N1+df$N2+df$N3+df$N4+df$N5+df$N6+df$N7

G_Total <- df$G1+df$G2+df$G3+df$G4+df$G5+df$G6+df$G7

+df$G8+df$G9+df$G10+df$G11+df$G12+df$G13+df$G15+df$G16

df = subset(df, select = c(PatientID))

symptom_df = data.frame(P_Total , N_Total , G_Total)

df = cbind(df, symptom_df)

Remove duplicate rows with the same PatientID (multiple assessments on same day)

df = df[!duplicated(df$PatientID),]

rownames(df) <- df$PatientID

df$PatientID <- NULL

df = data.frame(scale(df))

Plot out 3d scatterplot

scatterplot3d(x=df$P_Total , y=df$N_Total , z=df$G_Total , xlab="P Total", ylab="N Total",

zlab="G Total", color="deepskyblue4")

Find optimum k with Elbow Method

km.elbow = fviz_nbclust(df, kmeans , method = "wss") + geom_vline(xintercept = 5,

linetype = 2)

print(km.elbow)

Let us use k = 5 clusters

opt.km_result = kmeans(df , 5, nstart = 25)

min_wss = as.numeric(unlist(opt.km_result [5]))

for(i in 1:20){

curr.km_result = kmeans(df, 5, nstart = 25)

curr_wss = as.numeric(unlist(curr.km_result [5]))

if(curr_wss < min_wss){

25

Stanford University Final Report

opt.km_result = curr.km_result

min_wss = curr_wss

}

}

df$cluster = factor(opt.km_result$cluster)

scatterplot3d(x=df$P_Total , y=df$N_Total , z=df$G_Total , xlab="P Total", ylab="N Total",

zlab="G Total", color=rainbow (5)[opt.km_result$cluster])

scatter3d(x=df$P_Total , y=df$N_Total , z=df$G_Total , surface=FALSE ,

point.col=rainbow (5)[opt.km_result$cluster], xlab="P Total",

ylab="N Total", zlab="G Total")

print(opt.km_result [2])

}

Segmentation by PCA Analysis and k-means

Part2SegmentationByPCA <- function (){

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df_E = LoadData(paste(DATA_PATH ,"/Study_E.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D)

Select only readings with day of visit 0

df = filter(df, VisitDay == 0)

Select the columns with the symptoms

df = subset(df, select = -c(Study , Country , SiteID , RaterID , AssessmentID ,

TxGroup , LeadStatus , VisitDay , PANSS_Total))

Remove duplicate rows with the same PatientID (multiple assessments on same day)

df = df[!duplicated(df$PatientID),]

rownames(df) <- df$PatientID

df$PatientID <- NULL

df = data.frame(scale(df))

Plot the correlation matrix

corr_mtx = cor(df)

corrplot(corr_mtx , type = "upper", order = "hclust",

tl.col = "black", tl.srt = 45)

Obtain Principle Components

pc <- princomp(df)

plot(pc, col="dodgerblue3")

print(summary(pc))

Choose the number of PC that reaches 60% of total variance

pc <- prcomp(df)

var_list = summary(pc)$importance [2,]

print(var_list)

pc_length = 0

cur_var_prop = 0

for(i in 1: length(var_list)){

cur_var_prop = cur_var_prop + var_list[i]

if(cur_var_prop >= 0.60){

pc_length = i

break

}

}

26

Stanford University Final Report

print(pc_length)

Select the first i principle components to represent more than 60% variance

sel_comp = data.frame(pc$x[,1:i])

plot(sel_comp)

Find optimum k with Elbow Method

km.elbow = fviz_nbclust(sel_comp , kmeans , method = "wss") + geom_vline(xintercept = 5,

linetype = 2)

print(km.elbow)

use k = 5 clusters

km_result = kmeans(df, 5, nstart = 25)

plot(sel_comp , col=km_result$clust)

Split into separate dataframes corresponding to cluster

cluster_df = data.frame(km_result$cluster)

cl1_df = filter(cluster_df , km_result.cluster == 1)

cl2_df = filter(cluster_df , km_result.cluster == 2)

cl3_df = filter(cluster_df , km_result.cluster == 3)

cl4_df = filter(cluster_df , km_result.cluster == 4)

cl5_df = filter(cluster_df , km_result.cluster == 5)

Filter into main dataframe to obtain the symptom scores

df_1 <- subset(df, rownames(df) %in% rownames(cl1_df))

df_2 <- subset(df, rownames(df) %in% rownames(cl2_df))

df_3 <- subset(df, rownames(df) %in% rownames(cl3_df))

df_4 <- subset(df, rownames(df) %in% rownames(cl4_df))

df_5 <- subset(df, rownames(df) %in% rownames(cl5_df))

Obtain the means of all symptom scores in each cluster

res.means_df = rbind(sapply(df_1, mean), sapply(df_2, mean), sapply(df_3, mean),

sapply(df_4, mean), sapply(df_5, mean))

rownames(res.means_df) <- c("C1 Mean","C2 Mean","C3 Mean","C4 Mean","C5 Mean")

print(res.means_df)

}

27

Stanford University Final Report

6.4 Part 3 Code: Forecasting

import csv

import pandas as pd

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense , LSTM , Bidirectional

import itertools

from sklearn.model_selection import train_test_split

from keras.utils import to_categorical

from sklearn.preprocessing import LabelEncoder

from sklearn import preprocessing

from numpy import mean , sqrt , square

from tensorflow.keras.metrics import RootMeanSquaredError

import matplotlib.pyplot as plt

Splits the training data and the applied (study E) data and performs one -hot -encoding

def init_data_split(train_df , applied_df):

train_df = train_df.drop_duplicates(

subset =["PatientID", "VisitDay"], keep=’first ’)

applied_df = applied_df.drop_duplicates(

subset =["PatientID", "VisitDay"], keep=’first ’)

cut_index = len(train_df)

combined_df = pd.concat ([train_df , applied_df])

Perform One -Hot Encoding on Country and TxGroup

label_encoder = LabelEncoder ()

country_encoded = label_encoder.fit_transform(combined_df[’Country ’]. to_numpy ())

txgroup_encoded = label_encoder.fit_transform(combined_df[’TxGroup ’]. to_numpy ())

country_ohc = to_categorical(country_encoded)

txgroup_ohc = to_categorical(txgroup_encoded)

merged_array = np.hstack ((country_ohc , txgroup_ohc))

df_ohc = pd.DataFrame(data=merged_array)

combined_df = combined_df.drop([’Study ’, ’SiteID ’, ’RaterID ’, ’AssessmentID ’,

’PANSS_Total ’, ’Country ’, ’TxGroup ’], axis=1)

combined_df = pd.concat ([combined_df.reset_index(drop=True),

df_ohc.reset_index(drop=True)], axis=1)

return (combined_df , cut_index)

Calculates the maximum number of occurences of the same patient

def count_max_occur(df):

First calculate the largest number of occurences of the same patient

cur_patient_id = df.iloc[0, 2]

cur_count = 0

max_count = 0

max_id = cur_patient_id

for i in range(0, len(df)):

if df.iloc[i, 0] == cur_patient_id:

cur_count += 1

else:

if max_count < cur_count:

max_count = cur_count

max_id = cur_patient_id

cur_patient_id = df.iloc[i, 0]

cur_count = 1

28

Stanford University Final Report

return max_count , max_id

Obtains the output (response) of the training set

def extract_y(df):

y_mtx = []

cur_patient_id = df.iloc[0, 0]

for i in range(0, len(df)):

print("preprocessing iteration ", i, "/", len(df), " [1/2]")

if i != len(df)-1:

if df.iloc[i+1, 0] != cur_patient_id:

y_mtx.append(df.iloc[i, 2:32]. tolist ())

cur_patient_id = df.iloc[i+1, 0]

else:

y_mtx.append(df.iloc[i, 2:32]. tolist ())

y_mtx = np.array(y_mtx)

return (y_mtx)

Obtains the input (features) of the training set

def extract_x(inp_df , max_count , cut_index):

patient_id = inp_df[’PatientID ’]

Minmax normalization

inp_df = inp_df.drop([’PatientID ’], axis=1)

df_scaled = (inp_df -inp_df.min ())/(inp_df.max()-inp_df.min())

inp_df = pd.concat ([patient_id , df_scaled], axis=1)

x_train_df = inp_df [: cut_index]

x_applied_df = inp_df[cut_index :]

print(x_train_df.to_numpy (). shape)

print(x_applied_df.to_numpy (). shape)

x_combined = [x_train_df , x_applied_df]

x_result = []

for df in x_combined:

x_mtx = []

cur_x_mtx = []

cur_patient_id = df.iloc[0, 0]

cur_iter = 0

row_length = len(df.drop([’PatientID ’], axis=1).iloc[0,]. tolist ())

for i in range(0, len(df)):

print("preprocessing iteration ", i, "/", len(df), " [2/2]")

cur_iter += 1

if i != len(df)-1:

checks if next patient in list is still the same patient

if df.iloc[i+1, 0] != cur_patient_id:

Pad with 0’s if there are empty rows

while(cur_iter <= max_count):

masked_row = [0]* row_length

cur_x_mtx.insert(0, masked_row)

cur_iter += 1

cur_iter = 0

x_mtx.append(cur_x_mtx)

cur_x_mtx = []

cur_patient_id = df.iloc[i+1, 0]

else:

if(cur_iter <= max_count):

cur_x_mtx.append(

df.drop([’PatientID ’], axis=1).iloc[i,]. tolist ())

else:

Pad with 0’s if there are empty rows

while(cur_iter <= max_count):

masked_row = [0]* row_length

cur_x_mtx.insert(0, masked_row)

29

Stanford University Final Report

cur_iter += 1

cur_iter = 0

x_mtx.append(cur_x_mtx)

convert to numpy array

x_mtx = np.array(x_mtx)

x_result.append(x_mtx)

returns x and y matrices

return (x_result[0], x_result[1])

Create RNN with one Bidirectional Layer and one Dense Layer

def createRNN(x_train , y_train , epoch):

model = Sequential ()

model.add(Bidirectional(LSTM(30, activation=’tanh’), input_shape =(x_train.shape[1:])))

30 PANSS symptom scores , no activation function

model.add(Dense(y_train.shape[1]))

model.compile(loss="mse", optimizer="adam", metrics =[

tf.keras.metrics.RootMeanSquaredError ()])

model.fit(x_train , y_train , epochs=epoch , batch_size=5, verbose=1, validation_split=0.1)

return model

def main ():

Read files into a Dataframe

df_A = pd.read_csv(’Study_A.csv’)

df_B = pd.read_csv(’Study_B.csv’)

df_C = pd.read_csv(’Study_C.csv’)

df_D = pd.read_csv(’Study_D.csv’)

df_E = pd.read_csv(’Study_E.csv’)

Merge dataframes A to D together

df = pd.concat ([df_A , df_B , df_C , df_D])

df.to_csv(r’CombinedStudy.csv’, index=False)

print(df.head(5))

First filter the training model to include patients who finished 18 weeks of study

train_df = df[df.LeadStatus == ’Passed ’]

train_df = train_df[train_df.PatientID.isin(train_df[train_df["VisitDay"] >

120]["PatientID"]. values.tolist ())]

train_df = train_df.drop([’LeadStatus ’], axis=1)

combined_df , cut_index = init_data_split(train_df , df_E)

max_count , max_id = count_max_occur(combined_df)

try:

Attempt to load the numpy array

print("Attempting to open train numpy file ...")

with open(’preproc_data.npy’, ’rb’) as f:

x_applied_mtx = np.load(f)

x_mtx = np.load(f)

y_mtx = np.load(f)

except:

Preprocess data and save it

print("No train numpy file found , preprocessing data ...")

y_mtx = extract_y(combined_df [: cut_index])

x_mtx , x_applied_mtx = extract_x(combined_df , max_count , cut_index)

with open(’preproc_data.npy’, ’wb’) as f:

np.save(f, x_applied_mtx)

np.save(f, x_mtx)

np.save(f, y_mtx)

x_train , x_test , y_train , y_test = train_test_split(x_mtx , y_mtx , test_size=0.2,

30

Stanford University Final Report

random_state=21314)

Obtain test MSE from study A-D

y_test = np.sum(y_test , axis=1)

model = createRNN(x_train , y_train , 80)

ypred = model.predict(x_test)

ypred[ypred < 1] = 1

ypred[ypred > 7] = 7

ypred = np.sum(ypred , axis=1)

ypred = np.round(ypred , 0)

print("RMSE error: ", np.sqrt(np.mean((y_test -ypred)**2)))

Obtain the prediction on study E

model = createRNN(x_mtx , y_mtx , 80)

ypred = model.predict(x_applied_mtx)

ypred[ypred < 1] = 1

ypred[ypred > 7] = 7

ypred = np.sum(ypred , axis=1)

ypred = np.round(ypred , 0)

print(ypred)

print(ypred.shape)

y_result = pd.DataFrame(data=ypred , columns =["PANSS_Total"])

y_result.to_csv(r’result.csv’, index=False)

if __name__ == "__main__":

main()

31

Stanford University Final Report

6.5 Part 4 Code: Binary Classification

suppressPackageStartupMessages ({

library(logging)

library(tree)

library(gbm)

library(glmnet)

library(randomForest)

library(class)

library(data.table)

library(mltools)

library(MLmetrics)

})

FIGSIZE = c(1000, 1000)

DATA_PATH = "..."

LoadData <- function(data_path , verbose=TRUE) {

stopifnot(file.exists(data_path))

data <- read.csv(data_path)

return (data)

}

Part4 <- function (){

df_A = LoadData(paste(DATA_PATH ,"/Study_A.csv", sep=""))

df_B = LoadData(paste(DATA_PATH ,"/Study_B.csv", sep=""))

df_C = LoadData(paste(DATA_PATH ,"/Study_C.csv", sep=""))

df_D = LoadData(paste(DATA_PATH ,"/Study_D.csv", sep=""))

df_E = LoadData(paste(DATA_PATH ,"/Study_E.csv", sep=""))

df = rbind(df_A, df_B, df_C, df_D)

Set Flagged or CS as 1, Passed to 0

df$LeadStatus[df$LeadStatus == "Assign to CS"] = 1

df$LeadStatus[df$LeadStatus == "Flagged"] = 1

df$LeadStatus[df$LeadStatus == "Passed"] = 0

df = subset(df, select=-c(Study , PatientID , Country , SiteID , RaterID , AssessmentID))

df$TxGroup = as.factor(df$TxGroup)

df_E = subset(df_E, select=-c(Study , PatientID , SiteID , Country , RaterID , AssessmentID))

df_E$TxGroup = as.factor(df_E$TxGroup)

df_E$LeadStatus = replicate(nrow(df_E), -1)

smp_size = 0.8*nrow(df)

train_index = sample(nrow(df), smp_size)

data.train = df[train_index ,]

data.test = df[-train_index ,]

Fit using Boosting

boost_fit = gbm(LeadStatus ~., data=data.train , cv.folds=10, bag.fraction = 0.75,

distribution="bernoulli", n.trees =1000, shrinkage =0.05)

boost_prob = predict(boost_fit , data.test , n.trees = 1000, type = "response")

boost_pred = ifelse(boost_prob > 0.5, 1, 0)

print(table(data.test$LeadStatus , boost_pred))

boost_acc = sum(data.test$LeadStatus == boost_pred)/nrow(data.test)

print(paste("Boost accuracy: ", boost_acc))

Fit using Logistic Regression

log_fit = glm(as.factor(LeadStatus) ~., data=data.train , family = binomial)

log_prob = predict(log_fit , data.test , type="response")

log_pred = ifelse(log_prob > 0.5, 1, 0)

32

Stanford University Final Report

print(table(data.test$LeadStatus , log_pred))

log_acc = sum(data.test$LeadStatus == log_pred)/nrow(data.test)

print(paste("Logistic Regression accuracy: ", log_acc))

Plots the test accuracy against mtry for Random Forest

num_pred = ncol(data.train)-1

test_accuracy = 1:num_pred

for(i in 1:num_pred){

print(paste("iteration: ", i, "/ ", num_pred))

rf_fit = randomForest(as.factor(LeadStatus) ~., data=data.train , mtry = i, ntree =1000)

rf_prob = predict(rf_fit , data.test , ntree =1000, type="prob")

rf_prob = rf_prob[,2]

rf_pred = ifelse(rf_prob > 0.5, 1, 0)

rf_acc = sum(data.test$LeadStatus == rf_pred)/nrow(data.test)

print(paste("rf accuracy: ", rf_acc))

test_accuracy[i] = rf_acc

}

plot (1: num_pred , test_accuracy , type="b", xlab="mtry", ylab="Test Accuracy")

Fit using Random Forest

rf_fit = randomForest(as.factor(LeadStatus) ~., data=data.train , ntree =1000, max.depth=5,

min.node.size=10, splitrule=Gini , replace=TRUE , sampsize=nrow(data.train),

importance=TRUE , mtry =7)

rf_prob = predict(rf_fit , data.test , ntree =1000, type="prob")

rf_prob = rf_prob[,2]

rf_pred = ifelse(rf_prob > 0.5, 1, 0)

rf_acc = sum(data.test$LeadStatus == rf_pred)/nrow(data.test)

print(paste("Random Forest accuracy: ", rf_acc))

Boosting Final Fit on study E

fin_boost_fit = gbm(LeadStatus ~., data=df , cv.folds=10, bag.fraction = 0.75,

distribution="bernoulli", n.trees =1000, shrinkage =0.05)

fin_boost_prob = predict(fin_boost_fit , df_E, n.trees = 1000, type = "response")

write.csv(fin_boost_prob , file = paste(DATA_PATH , "/Part 4/boost_result.csv", sep=""),

row.names=FALSE)

Random Forest Final Fit on study E

fin_rf_fit = randomForest(as.factor(LeadStatus) ~., data=df , ntree =1000, max.depth=5,

min.node.size=10, splitrule=Gini , replace=TRUE , sampsize=nrow(data.train),

importance=TRUE)

fin_rf_prob = predict(fin_rf_fit , df_E, ntree =1000, type="prob")

fin_rf_prob = fin_rf_prob[,2]

write.csv(fin_rf_prob , file = paste(DATA_PATH , "/Part 4/rf_result.csv", sep=""),

row.names=FALSE)

}

33

Stanford University Final Report

References

[1] Bidirectional Recurrent Neural Network. https: // en. wikipedia. org/ wiki/ Bidirectional_

recurrent_ neural_ networks , author = Wikipedia.

[2] Loukas,S. LSTM Time-Series Forecasting: Predicting Stock Prices Using An LSTM Model.
https://towardsdatascience.com/lstm-time-series-forecasting-predicting-stock-prices-using-an-lstm-model-
6223e9644a2f.

[3] Wikipedia. Positive and Negative Syndrome Scale. https: // en. wikipedia. org/ wiki/ Positive_ and_

Negative_ Syndrome_ Scale .

34

https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks
https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks
https://en.wikipedia.org/wiki/Positive_and_Negative_Syndrome_Scale
https://en.wikipedia.org/wiki/Positive_and_Negative_Syndrome_Scale

	Abstract
	Treatment effect
	Data Pre-processing
	Statistical Testing
	Comparison with Existing Medical Treatment

	Patient segmentation
	Naive Clustering Implementation and its Issues
	PCA and K-means Clustering
	Data Pre-processing
	Observing Correlation
	Performing PCA
	K-means Clustering
	Analyzing the Clusters and Segmenting the Population

	Forecasting
	Data Pre-processing
	Creating and Defining RNN Model
	Training the RNN Model
	RNN Model Performance

	Binary classification
	Data Pre-processing
	Logistic Regression
	Random Forests
	Gradient Boosting

	Appendix
	Figures and Diagrams
	Part 1 Code: Treatment Effect
	Part 2 Code: Patient Segmentation
	Part 3 Code: Forecasting
	Part 4 Code: Binary Classification

	References

