
Imperial College London

Department of Electrical and Electronic Engineering

Giving Access to Reliable Communication for Outdoor
Activities in Remote Areas

Authors’ Names:

Andreas Floros
Arie Arya
Arnau Bonet Farres
Arunansu Patra
Gabriele Johannes Giuli
Matthew Cooper
Oliver Bihami
Vincent Borchers

Authors’ CIDs:

01539636
01522674
01577271
01517169
01514763
01530402
01547598
01569387

Group Supervised by Dr Javier Barria

Final Report
27 March 2020

Group 5 Imperial College London Final Report

Contents

1 Introduction 5
1.1 Problem Specification . 5
1.2 Competitor Analysis and Market Share . 5

2 Design Criteria 6

3 Concept Designs and Selection 6

4 Concept Development 8
4.1 Client-Server Protocol . 9

4.1.1 Client Connect Protocol . 9
4.1.2 Message Transmission Protocol . 10
4.1.3 Network Update and Message Reception Protocol 10

4.2 Internodal (Radio-to-Radio) Protocol . 11
4.2.1 Broadcast (Ping) Protocol . 11
4.2.2 Buffered Token System . 13

4.3 iOS Application . 15
4.3.1 User Registration . 15
4.3.2 Connection to the Node . 16
4.3.3 Exchanging Messages . 18
4.3.4 Real-time Map . 18

4.4 Hardware . 19
4.4.1 Assembly . 19
4.4.2 Enclosure . 20

5 Project Management 21
5.1 Workflow and Division of Tasks . 21
5.2 Cost of the Project . 22

6 Extra Features of Our Product 22
6.1 GPS Module . 22
6.2 Emergency Button . 23
6.3 Buzzer for Alert . 23
6.4 On-Off Button . 23

7 Future Work 23
7.1 Direct connection with emergency services . 23
7.2 LCD for Battery Status . 24
7.3 Heart rate tracker . 24
7.4 Route Calculator Using GPS . 24

8 Conclusion 24

9 Appendices 25
9.1 Appendix A - Additional Protocols . 25

9.1.1 Node Entry Protocol . 25
9.1.2 Node Disconnect Protocol . 25
9.1.3 Client Entry Protocol . 26
9.1.4 Client Disconnect Protocol . 26

2

Group 5 Imperial College London Final Report

9.1.5 Message Reception Protocol . 27
9.1.6 Overcoming the Arduino Serial Buffer Limit . 28
9.1.7 GPS and Emergency Broadcast . 28
9.1.8 On-Off Device Handler . 29

9.2 Appendix B - Node Source Code . 30
9.2.1 Full Backend Code . 30
9.2.2 Buffered Token Implementation . 45
9.2.3 GPS Emergency Implementation . 46

9.3 Appendix C - iOS App Source Code . 47
9.3.1 AppDelegate.swift . 47
9.3.2 ChatsViewController.swift . 48
9.3.3 ConversationViewController.swift . 52
9.3.4 FirstLaunchViewController.swift . 56
9.3.5 MapViewController.swift . 58
9.3.6 LoginTextField.swift . 59
9.3.7 ParsedUser.swift . 60
9.3.8 User.swift . 60

9.4 Appendix C - Product Design Specification . 61
9.5 Appendix D - Gantt Chart . 67

References 68

3

Group 5 Imperial College London Final Report

Abstract

The objective of the project is to give people lacking access to usual communication infrastruc-
ture the ability to communicate conveniently, reliably and with small financial expense within an
off-the-grid network. The groups that are targeted by this solution are communities living in rural
areas or more specifically, groups of hikers or groups taking part in exploring expeditions.

To achieve this kind of communication, a mesh network topology is implemented using portable,
battery powered devices as the nodes. These devices are linked within the network by means of
XBee radio modules. A major role in the process of communication has our own communication
protocol that is used for encoding and decoding of messages.

The interface for the user happens through a custom phone App which is used to send and read
text messages. A feature that lets all network participants know about the case of an emergency
is implemented as well. A GPS module is used to automatically send the current location of a
network participant in need for help to all other participants.

As a result, three physical nodes have been built to test the network, and it works as intended.
The range of the system is in the hundreds of meters and can easily be raised to several kilometres
by exchanging the existing radio modules with more capable ones. This would need to be done in
order to achieve a decent range for using the system in real life applications.

Many aspects of the prototype of the system can be further improved. As a next feature, the
system could be connected to the internet to allow communication to the rest of the world. From
a constructional point of view, the circuit could be built on a PCB to increase reliability and to
improve the small form factor of the devices.

4

Group 5 Imperial College London Final Report

1 Introduction

The aim of this project is to design an off-grid radio communication system targeted to small com-
munities located in remote areas. The system can be used for ordinary communication, in the form of
text messages. Furthermore, location services and a quick-access emergency button allows the system
to be used for critical communication in a distress situation.

1.1 Problem Specification

Taking part in outdoor sports such as hiking or mountain climbing can be dangerous, so the people
who do these sports need to be able to reliably send distress signals through long distances or plan
rendezvous with other groups. However, in these remote environments, communication methods that
rely on pre-built infrastructure can be less reliable or not even usable. From 2004-2014, about 20,000
search and rescue cases across all U.S. National Parks were for day hikers [7]. In 2007, two people froze
to death in a cross-country skiing trip in Norway [21]. Current commercial communications rely on
pre-built mobile networks and satellites which can be difficult to access in remote areas and, in the case
of satellite communication, can be very expensive. Although traditional radio communication methods
do not require external towers, their range is limited and the amount of information transmittable is
very limited. In the event of an emergency or natural disaster, such methods of communication will
be unreliable.

The aim of this project was to create a product that enabled communication through a network
that did not rely on pre-existing ground infrastructure so that users can communicate on-the-go in
remote areas. We focused on an audience of people who would be taking part in sports that have a
significant element of danger in remote areas, and in the long term we want to expand our audience
to be able to provide coverage for remote areas of residence.

We wanted to make a product that was as convenient as possible to the user, while also keeping
its primary function of sending/receiving messages as reliable as possible. For user convenience, we
aimed to make the product lightweight, compact (the device should ideally fit in a rucksack without
being too heavy), user-friendly and relatively cheap. We aimed to minimize the cost of the product,
as a dangerous situation could occur to anyone in a remote environment and such a product should
be widely available to the public at a low price. To limit costs, we had to build the mechanical parts
ourselves and use cheaper radio modules. We also were aware that the user may be stranded for a
long period of time, so the battery life should be lengthy and the product should be easy and intuitive
to use.

1.2 Competitor Analysis and Market Share

Although communication methods for remote and inaccessible areas exist, such as radio communica-
tion, applications of these methods require very specialised equipment and is very limited in range.
Furthermore, the quality and amount of transmittable data information is limited. Satellite commu-
nication has now become the dominant method of communication, providing nearly global coverage
without the limitations of radio communication. However, the increased cost of satellite communica-
tion results in many people not being able to afford such communication services. As such, mobile
data access is limited in developing countries, and in 2014, 19 million people in the United States did
not have broadband access [22].

There exist companies such as Groundcontrol, Inmarsat, and Iridium that provide satellite Wi-Fi
solutions for prices ranging from $1,000 to $13,000 just for the device [5, 4, 6]. Other companies
such as Nokia, Omoco, and Ericsson provide IoT networks for industrial applications, and plan to
bring 5G to rural areas [3]. The main disadvantage in the services provided by these companies is the
affordability, therefore accessibility, of their services to people especially in remote or less developed

5

Group 5 Imperial College London Final Report

areas. Project Owl offers an emergency network for people to connect via smartphones to ask for help
in emergencies [11]. While their applications match closer to those of this project, the fact that this is
only designed to send emergency signals and not routine messages limits its usability. Other solutions
like Firechat connect mobile phones through an App using peer-to-peer wireless mesh networking via
Bluetooth or various multipeer connectivity frameworks [10]. While this may be the closest currently
existing solution to the outlined problem, it relies on people with smartphones being close in range
with each other, thus cannot be extended to cover large distances. This project aims to deliver a
reliable communication method for remote areas at a much reduced cost.

2 Design Criteria

This is a selection of the most important and updated product specifications. For a more complete
analysis of the design criteria please refer to the Product Design Specification (9.4).

• It must be able to provide reliable off-grid communications as the product will be used in
environments where there are no established means of communication. The reliability of this
system is key, as the product must not fail when the safety of a human may be on the line.

• The product must be able to communicate long distances (> 1km) so that the nodes that pass
on the signal do not have to be right next to each other.

• The product must be able to transfer data in real time so that the user can get a response as
quickly as possible but must also be capable of temporary data storage to account for the fact
that users may be offline which should not be a reason to miss a message.

• The device should be capable of running on its own power for long periods and not rely on
external infrastructure to send a message as in the intended environments, access to a power
grid and other infrastructure may not be available.

These are additional design criteria that have been developed after the interim report:

• In the case of an emergency, the device should allow to easily broadcast the location of a person
in need for help to all network participants. The capture of the location must not rely on the
GPS functionality of a phone. The broadcasting of the emergency signal needs to be initiated
by a simple button press. The button needs to be of reasonable size and positioned clearly in
such a way that it is recognizable as an emergency button on the outside of the device.

3 Concept Designs and Selection

There are various designs that would satisfy the above specifications. In this section we present the
designs that were considered and the reason why our chosen implementation is the best in terms of
cost efficiency and utility. Note that for compactness, we present a summary of each idea. The reader
is encouraged to refer to the preliminary report for a more in-depth analysis.

Our proposed solutions can be grouped in two categories: Satellite communication and communi-
cation via radio modules as shown below:

• Satellite communication

• Communication via radio modules:

– Mesh network:

6

Group 5 Imperial College London Final Report

∗ Centralised network

∗ Decentralised network

∗ Decentralised half duplex network

– Low power system

Satellite communication, while effective, is much more expensive, thus our product would not be very
attractive for customers and surviving the competition in the market would be nearly impossible.
Shown below is the cost analysis conducted for the satellite idea:

Component Individual Cost (£)

Raspberry Pi 3 Model B 32.00

3.7 V 2600 mAh Lithium-Ion Batteries 7.11

TP4056 Li-Ion Charging Module 0.97

RockBLOCK 9603 Module 209.00

Additional Transmission Cost 1.60/kB

Total 249.08 + 1.60/kB

Table 1: Cost analysis of satellite idea [20, 15, 2, 16, 12]

We then considered implementing a communication system based on radio modules. We present two
variations of this idea:

One approach would be to implement a mesh network structure and to use path finding algorithms to
determine the optimal route for each message to reach its target destination. Based on this structure
we can again take different approaches. The solutions we considered were a centralised system, a
decentralised system and a half duplex network. The centralised approach is more robust compared
to the other two since we would be implementing backup networks in case connection is lost. How-
ever, it is far more complicated and so we chose to reject this proposal. The differences between the
half duplex system and the decentralised approach are software based, in terms of hardware the two
approaches are identical. Overall, the half duplex approach is more restrictive as it assumes only one
user can send a message at a time. Shown below is our cost analysis for these methods:

Component Individual Cost (£)

Arduino MKR WiFi 1010 30.12

DIGI XKB2-Z7T-WZM 27.55

3.7 V - 1.8 Ah LiPo Batteries 9.26

BOB-08276 Breakout Board 2.29

Adafruit 2mm 10 pin Socket Headers 1

Total 70.22

Table 2: Cost analysis of mesh network idea [14, 9, 8, 17, 13]

The second option we considered is a naive approach to communication which relies on heuristics for
successful reception of messages. The idea behind this method is that we would implement nodes
with simple broadcasting algorithms which would broadcast the messages along with their target
destination until they reached the intended recipient. The messages would essentially take a random
trajectory which would depend on the users passing by broadcasting nodes. The key advantage of this
method is that because of its simplistic approach, it would consume very little power compared to
the other proposals. The obvious disadvantages are that we wouldn’t be able to guarantee successful

7

Group 5 Imperial College London Final Report

communication and that this system requires a lot of users to be effective. Our cost analysis, as shown
in Table 3, shows that this approach is just as cost effective as the first approach discussed.

Component Individual Cost (£)

Adafruit Feather M0 with ATWINC1500 WiFi Module 32.5

3.7 V 2600 mAh Lithium-Ion Batteries 7.11

TP4056 Li-Ion Charging Module 0.97

3W 6V 600mA Mini Solar Panels 10.95

Adafruit RFM96W LoRa Module 18.5

Total 70.03

Table 3: Cost analysis of low power idea[18, 15, 2, 1, 19]

Having performed the above analysis we chose to implement the mesh network idea and more specifi-
cally, the decentralised system. Shown below is the matrix we used to make this decision:

Solution Cost Reliability
Appropriate
Complexity

Scalability Potential Score

Satellite
Communication

3 10 4 10 2 29

Centralized
Network

5 8 4 7 8 32

Decentralized
Network

7 7 8 7 8 37

Decentralized
Half-Duplex

Network
7 6 5 7 6 31

Low Power
System

7 1 6 4 7 25

Table 4: Decision matrix

4 Concept Development

After a careful evaluation of the product design specification (9.4) the project’s high level design was
developed with the help of the considerations made in Section 3.

As we can see in the figure above, the project can be mainly divided into two major subsystems:

• User Interface: allows the user to easily access the network to see who is online, exchange
messages with other users, see online user’s locations and send a distress signal

• Network Node: creates the communication link between users. Manages the stream of infor-
mation, by redirecting messages to the right recipients

The user interface allows the user to register and access the functionalities of the network: it acts as a
link between the user itself and the node. The network nodes constitute the network itself, and each
node has to correctly receive, interpret, and send data in order to propagate the messages through.

The communication system of the radio mesh network can be categorized into two main parts, the
client-server protocol and the internodal protocol (radio-to-radio). The foundation of the internodal
communication between nodes is the in-built DigiMesh protocol in the XBee radio modules, which

8

Group 5 Imperial College London Final Report

Arduino MKR WiFi 1010

Sleep Button

Emergency Button

XBee (Series 2)

USER INTERFACE

LOCATION SERVICES

RADIO LINK

iOS App

LiPo Battery

UBlox NEO6

Figure 1: High level design of the project

is a peer-to-peer networking protocol that links the radio nodes in a meshed network topology. This
allows for a decentralized communication infrastructure; or in other words, the autonomous relaying
of messages throughout the network with no central node dependencies.

The primary objectives of the handwritten protocols introduced for our project are as follows:

• Reliable and collision-free

• Scalable and dynamic

• Fast transmission and reception

Although security may also be an important feature to consider, encryption and decryption systems
are not introduced at this stage of the project as an off-grid communication will most likely not contain
information that require concealment, nor would it be a chief target for cyber-attacks.

4.1 Client-Server Protocol

The client-side iOS application and the server run by the Arduino must share a common protocol
for bi-directional communication between them. The four main protocols used in the client-server
communication are the client connect protocol, message transmission protocol, and the network update
and message reception protocol.

The main identification system for each client within the network is the use of a local client IP
Address, the local Arduino MAC Address, as well as a unique client ID generated by the App. By
knowing the ID of a client, a lookup table within the Arduino allows the client’s IP Address and
MAC Address to be identified, and hence the client can be located within the network and a directed
message can be sent to it.

4.1.1 Client Connect Protocol

The client connect protocol is a HTTP POST request made by the App which tells the Arduino server
that a new client has joined the local network. This requires both the name of the client, as well as

9

Group 5 Imperial College London Final Report

its unique ID. The HTTP POST request is made on the default server IP Address of 192.168.4.1 (set
within the Arduino code):

192.168.4.1/client name : {client name}/client id : {client id}

Upon receiving the new client, the local server will then broadcast this information to the wide network
to notify all other nodes of the existence of this new client, which enables other clients to begin sending
messages to this new client via its unique ID, and vice versa. Additionally, upon connecting to the
server, the client will be given a unique local IP Address which allows it to be distinguished from
other clients in the node. This, along with the Arduino’s MAC Address, is attached alongside the
client’s unique ID upon broadcasting to other nodes so that it can be located in the wide network.
This broadcasting mechanism will be described in the internodal protocol section.

4.1.2 Message Transmission Protocol

The message transmission protocol is also HTTP POST request made by the App to the server.
Attached to this request is the message to be sent, the source ID of the client sending the message, as
well as the destination ID of the target client:

192.168.4.1/message : {message}/source id : {source id}/target id : {target id}

Upon receiving this request, the Arduino will parse the data and process it. Firstly, since the target
ID alone is not sufficient to identify the target client’s location within the network, the server must
use its lookup table which contains information about all the clients connected in the whole network
to find the corresponding clients’ local IP Address and MAC Address. After retrieving this data, the
message will then be placed in a message queue, which can hold multiple messages before the node
broadcasts them out. This is necessary as the nodes cannot transmit the messages immediately; it
uses a buffered token system to prevent network traffic and collision, which will be described in the
Internodal Protocol section (4.2).

After the transmission of the message, the message queue will be cleared to allow it to take new
messages from the client, and the process is repeated.

Figure 2: Message queue lookup table before and after transmission

4.1.3 Network Update and Message Reception Protocol

This protocol is a HTTP GET request made by the App to the server and requests a JSON data
containing all of the available clients in the whole network, as well as any client-specific messages.
This allows the client to have an updated list of all clients in the network, whilst simultaneously
receiving any incoming messages from other clients. This protocol combines both client information
and message information into a single simple protocol to prevent the over-crowding of the local server
by multiple protocols. The protocol is simply given by:

192.168.4.1/update data

10

Group 5 Imperial College London Final Report

The JSON data that will be sent to the client (App) will be in the form:

{”Type”: ”Users”,
”Data”:[{”Name”:”Name Here”, ”ID”:”ID here”, ”Location”:”Location Here”}],
”Messages”:[{”Source ID”:”Source ID Here”,”Message”:”Message Here”}],
”Emergency”:[{”Location”:”Location Here}]

}

The ‘Data’ field contains the name and ID of all clients in the network, whilst the ‘Messages’ field
contain all the messages to the client as well as the source ID of the clients who sent the messages.
The emergency field contains the data of all users in the network that have called for an emergency
assistance (this will be described in more detail in section 9.1.7). This JSON information will then be
parsed by the App and both the list of clients and the messages will be displayed to the user.

4.2 Internodal (Radio-to-Radio) Protocol

The internodal protocol is a series of rules established for the communication between radio nodes.
This, along with the DigiMesh protocol, forms the backbone of the whole communication process in
the system.

The protocols can be divided into multiple sections: the broadcast / ping protocol, client and
node entry protocol, client and node disconnect protocol, the message reception protocol, and the
buffered token system. The most fundamental of these protocols that control the broadcasting of
message and information are the buffered token system and the broadcast / ping protocol. These two
sections will be described thoroughly in their individual parts below. As the other protocols have a
more general and less sophisticated implementation, their code and description is put under section
9.1 of the appendix. These include the code for handling the GPS serial message and the operation
of turning the device on and off using an internal digital interrupt.

4.2.1 Broadcast (Ping) Protocol

A key standalone protocol used for the communication between nodes is the use of “pings” to broadcast
messages and client information throughout the whole network. This allows the nodes to obtain
information about all of the clients connected in the wide network and any messages available for the
clients in the node. It is the foundation of the whole communication process between nodes.

Only a single protocol is used for communication between the nodes to prevent the over-crowding
of data and traffic in the channel; which improves the reliability of the network considerably.

This protocol has two main subcomponents, the client information component, and the message
component. The client information component sends a list of all available clients connected to the
local node. Denote “clientInfo N” as the information about the N-th local client in the node, the
protocol which describes this client completely is given by:

clientInfo N = client name : {client name}/client ip : {client ip address}/client mac

{client mac address}

Then, the client information component of the ping protocol is given by:

ping mac : {source mac address}/client : {clientInfo 1}/client : {clientInfo 2}/
.../client : {clientInfo N}

Attached behind this client information component is a list of all messages from all of the clients within
the node. As mentioned previously, all messages sent by clients within the node is temporarily held

11

Group 5 Imperial College London Final Report

in a message queue and is sent out when it is the node’s turn to broadcast (described under Buffered
Token System below) to reduce network traffic. Denote “messageInfo N” as the N-th message sent by
clients within the node. Then, the protocol to describe this message is given by:

messageInfo N = /message : {message}/target ip : {destination IP address}/target mac :

{destination mac address}/source id : {source id}

This message protocol contains a complete information of both the location of the target client within
the network as well as the information of the client who sent the message. Since multiple messages
are attached within this whole protocol, the whole protocol will then be:

messageInfo 1/messageInfo 2/. . . /messageInfo N

Combining both the client information component and the message component, the whole ping /
broadcast protocol has the form:

ping mac : sourcemacaddress/client : clientInfo 1/client : clientInfo 2/.../client : clientInfo N

/messageInfo 1/messageInfo 2/. . . /messageInfo N/token : token/finish protocol

The ‘token’ and ‘finish protocol’ will be described in the Buffered Token System and Overcoming the
Arduino Serial Buffer Limit section (9.1.6).

The code to implement this broadcast is shown below:

1 /* Broadcast Protocol */

2 // broadcast has general form ping_mac:(source mac)/client:(client info 1)/client:(client

info 2)/...

3 void broadcastPing(){

4 String broadcast = "ping_mac:" + currMacAddress;

5 for(int i = 0; i < currClientIndex; i++){

6 broadcast = broadcast + "/client:" + clientArray[i];

7 }

8 // refreshes the local network clients

9 for(int i = 1; i < currClientIndex+1; i++){

10 networkMacAddress[0][i] = clientArray[i-1] + "/client_mac:" + currMacAddress;

11 }

12 for(int i = currClientIndex+1; i < 11; i++){

13 networkMacAddress[0][i] = "";

14 }

15 for(int i = 0; i < currMessageSendIndex; i++){

16 broadcast = broadcast + "/" + messageSendList[i];

17 messageSendList[i] = "";

18 }

19 // Tokens of form: 1-2-3-4-5-....-N-0

20 currMessageSendIndex = 0;

21 currToken = currToken.substring(2) + "-" + currToken.substring(0,1); // moves token

forward

22 broadcast = broadcast + "/token:" + currToken + "/finish_protocol";

23 Serial1.println(broadcast);
24 }

This long string from the protocol will then have to be parsed during the reception of the pings to
separate it into individual client or message information used by the server. This will be described by
the individual sections where they are used below.

12

Group 5 Imperial College London Final Report

4.2.2 Buffered Token System

The radio mesh network is limited in that the nodes cannot transmit messages randomly as it wishes.
If multiple nodes broadcast at any one time, the messages from these nodes may collide upon reception,
causing corruption and loss of data. Though the likelihood of collision in small networks is small, as
the network grows in size, the probability of collision increases considerably, making this notion of
“transmit as you please” unscalable and unreliable.

Figure 3: Collision of transmitted data

A solution to this is the buffered token system. It is a procedure used within the network which
allows only a single node to transmit / broadcast messages at any one time whilst the others wait and
listen. This allows for a collision-free and reliable communication channel with a precisely moderated
traffic. The procedure is analogous to a token ring system, the main difference being the topology
of the network. The radio network remains a meshed (and not a ring) network but utilizes tokens
as a means of controlling the order of broadcasting nodes. As explained previously, the standalone
protocol for communication between the radio modules is the ping protocol. This is of the form:

ping mac : {sourcemacaddress}/client : {clientInfo 1}/client : {clientInfo 2}/.../client : {clientInfo N}
/{messageInfo 1}/{messageInfo 2}/. . . /{messageInfo N}/token : {token}/finish protocol

At the end of every broadcast from a node, a token is sent in conjunction. The token is a string of
numbers with dashes in between, and have the general form:

Token : n1–n2–n3 − . . . − nN–0

Where ni represents the node ID associated with the i-th node. Every node in the network will have
a unique node ID associated with it. For example, let the network contain 5 nodes with ID 1, 2, 3, 4,
and 5. The token will then have the form:

Token : 1–2–3–4–5–0

Note it does not have to be in an increasing order, it will depend entirely on the order of the nodes
joining the network. Another example of token for the same network is:

Token : 5–3–2–4–1–0

The 0 token is a special token which is always present in the token system. Its purpose will be
described later.

Upon receiving the pings, each node will parse this token and store it in a global variable called
“currToken”. The procedure then is as follows. The node will read the first node ID in currToken and
compare it with its own ID. If it is equal to its own ID, it will immediately broadcast its own ping to

13

Group 5 Imperial College London Final Report

the network, with the token moved forward one step. For example, if the token received by all of the
nodes is:

Token : 1–2–3–4–5–0 (1st step)

All of the other nodes with ID 2, 3, 4, 5 will see that its own ID does not match the first ID in the
token (which is 1), so they will wait and not broadcast. Node 1 will receive this token, see that the
first ID matches its own, and broadcast its own ping with the token modified to move forward one
step, and the 1 token placed at the back.

Token : 2–3–4–5–0–1 (2nd step)

The procedure then continues, with Node 2 receiving the token and broadcasting its own ping with a
modified token of:

Token : 3–4–5–0–1–2 (3rd step)

This allows all of the nodes to take turn broadcasting its pings (which contain both network information
and messages), which completely eliminates the possibility of collision whilst maintaining speed and
scalability.

An important issue that arises from a token system is the possibility of the token information
being lost. What happens if the token is 1–2–3–4–5–0 and Node 1 disconnects from the network? A
mechanism used to deal with this situation is to have a timer. If all of the other nodes do not receive
a broadcast from node 1 within a given time interval (5 seconds), the global variable currToken will
be moved one step forward automatically, whilst simultaneously deleting the idle token ID (the token
now becomes 2–3–4–5–0). This will allow the token system to continue forward, even when a node
disconnects in the middle of transmitting data, hence eliminating the possibility of a lost token (which
will freeze the system).

Lastly, there is the challenge of new nodes attempting to join the network. The naive way to handle
new nodes is to immediately broadcast their information as they are powered on. However, this may
cause collision of data with any nodes transmitting at that time instant (i.e. the node whose ID is the
equal to the first token ID). To overcome this problem, we use the 0 token. This is a special token that
does not describe any one node. If the token iteration is at the 0 token, a timer is used to wait and
listen for any new nodes that want to join the network (over a time interval of 3 seconds). At the 0
token, no node in the network will be transmitting data (they will all be listening for broadcasts), and
any new nodes wishing to join the network will be able to broadcast their information to the network.

For example, let node 6 be a node that wishes to join a network with 5 nodes. It will first wait
until the 0 token is reached:

Token : 3–2–0–1–4–5 (1st step)

Token : 2–0–1–4–5–3 (2nd step)

Token : 0–1–4–5–3–2 (3rd step)

At this point, all other nodes are quiet, and node 6 can broadcast a new token with its own ID in the
list.

Token : 6–0–1–4–5–3–2 (4th step)

Now, node 6 is part of the token list, and is has successfully joined the network.
Another issue that may arise is, what happens if multiple nodes wish to join the network at the

same 0 token? To resolve this issue, all of these new nodes at the 0 token will be given a pseudo
random number between 0 and 3000 (0 and 3 seconds), which is the time interval of the 0 token.
This represents the time after the token reaches 0 at which these new nodes broadcasts. Through this
system, there will be an extremely small probability that any two new nodes within this small time
interval will collide.

14

Group 5 Imperial College London Final Report

For example, say node 6 and node 7 wishes to enter the network with 5 nodes at the same 0 token,
and the pseudo random number attached to node 6 is 743 (so 0.743 seconds) whilst node 7 is 2300
(2.3 seconds). Then, the procedure follows similarly as before, they will wait for the 0 token, and
broadcast after a certain pseudo random time interval.

Token : 2–0–1–4–5–3 (1st step)

Token : 0–1–4–5–3–2 (2nd step)

Token : 6–0–1–4–5–3–2 (3rd step)

Token : 0–1–4–5–3–2–6 (4th step)

Token : 7–0–1–4–5–3–2− 6 (5th step)

As can be seen, node 6 and node 7 has successfully joined the network using this procedure.
In conclusion, the buffered token system provides a powerful, robust, and reliable mechanism

to transmit information throughout the network, whilst also maintaining its speed and scalability
(the delay between each non 0 token is negligible, hence adding more nodes will not affect its speed
considerably, which allows for scalability).

The code to implement the buffered token system can be observed in section 9.2.2 of the ap-
pendix. The segment which involves the token being pushed forward upon broadcast is given under
the ”broadcastPing()” function described under the Ping Protocol section:

1 currToken = currToken.substring(2) + "-" + currToken.substring(0,1); // moves token

forward

4.3 iOS Application

Most of the user interface was implemented as a iOS App. This ensured that the interface is user-
friendly and flexible. The App features the following functionalities:

• Registering: when the App is first launched, the user is asked to enter his or her credentials.
A unique id is assigned to the user, that can now join any compatible network

• Managing Users: a table shows the users online, by tapping on one entry, the specific conver-
sation is opened.

• Chatting: a text-message environment allows the user to exchange private messages with the
selected recipient

• Monitoring Locations: a map shows the real-time location of the users connected to the
network

The reader is encouraged to refer to Section 9.3 for the full App source code.

4.3.1 User Registration

When the application is opened for the first time, the user is prompted to insert their credentials. The
program checks for the validity of the name and then a timestamp ID is created: this code will later
be used to uniquely identify each user.

The unique identifier has to be generated with no internet connection. To do so, a string composed
of the date and time followed by a random sequence of numbers is used as ID. This makes the event
of two identifiers being equal very low. The code used to generate the identifier is the following:

15

Group 5 Imperial College London Final Report

1 let randomNumber = Int.random(in: 0 ..< 10000) // Generate random number

2

3 let today_string = String(year!) + String(month!) + String(day!) + String(hour!) + String

(minute!) + String(second!) + String(randomNumber) // Append random number to date-

time

The program also saves the user’s name, surname and ID. Therefore, this information can be retrieved
automatically when the App is launched, and the AppDelegate automatically assigns the Conversa-
tionViewController (the view that holds the list of online users and conversations) as the entry point
of the program:

1 UserDefaults.standard.set(newId, forKey: "USER_ID") // Save ID

2 UserDefaults.standard.set(firstName.text!, forKey: "USER_FIRSTNAME") // Save first name

3 UserDefaults.standard.set(lastName.text!, forKey: "USER_LASTNAME") // Save second name

(a) User inputting data in
the form

(b) The user is registered

Figure 4: Screenshot of FirstLaunchViewController.swift view. This view controller is prompted
during first launch

4.3.2 Connection to the Node

The phone connects to the node via Wi-Fi communication. Communication between the App and
the node happens through a series of HTTP GET requests made by the application. The App then
receives the information from the node in form of JSON, as described in Section 4.1.

The HTTP request is triggered at a constant interval of 3 seconds by a system timer:

1 Timer.scheduledTimer(timeInterval: 3, target: self, selector: #selector(refreshUsers),

userInfo: nil, repeats: true)

Every time the timer is triggered, the function refreshUsers() is called:

1 @objc func refreshUsers() {

2 print(self.available_users)

3

4 if !connected {

16

Group 5 Imperial College London Final Report

5 performHandshake()

6 }

7

8 let requestString = "http://\(self.address)/update_data"

9 Alamofire.request(requestString).responseJSON(completionHandler: { response in

10 if let json = try? JSON(data: response.data!) {

11 print(json)

12 self.parseUsers(json: json)

13 } else {

14 print("Error in JSON")

15 }

16 })

17 }

If the connection to the node was not established yet, the program performs an handshake: the user
credentials are sent to the node, that links them with the IP address of the client performing the
handshake.

After the handshake is performed, the App sends a request informing the node to transmit the
data, which is processed by parseUsers():

1 func parseUsers(json: JSON) {

2 for message in json["Messages"].arrayValue {

3 let sender_id = message["Source ID"].stringValue

4 let message_text = message["Message"].stringValue

5

6 self.addMessage(message_text: message_text, user_id: sender_id)

7 }

8

9 for user in json["Data"].arrayValue {

10 let user_id = user["ID"].stringValue

11 let user_name = user["Name"].stringValue

12 let location = user["Location"].stringValue

13

14 let latlon = location.split(separator: ";", maxSplits: 1)

15 guard let lat = Float(latlon[0]) else { return }

16 guard let lon = Float(latlon[1]) else { return }

17

18 insertUser(user: ParsedUser(name: user_name, ID: user_id, lat: lat, lon: lon))

19 }

20 }

The function parses the incoming JSON and exctracts: users credentials, any new incoming message,
the locations coordinates and any distress signal. All the parsed information is held in an array of
Users. The list of available users is then displayed in the form of a UITableView:

1 override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

2 let cell = tableView.dequeueReusableCell(withIdentifier: "StandardCell", for:

indexPath)

3

4 cell.textLabel?.text = available_users[indexPath.row].name

5 cell.detailTextLabel?.text = available_users[indexPath.row].messages.last

6

7 return cell

8 }

Each cell contains the name of the user and the latest received message from the considered contact.

17

Group 5 Imperial College London Final Report

4.3.3 Exchanging Messages

Once one of the available users is selected, the ConversationViewController is opened. This view
utilizes the MessengerKit pod to display a iMessage like interface. The data displayed by this view
is updated by the ChatsViewController that periodically parses the data coming in from the node:

1 if let vc = self.fwdVC, let id = self.selected_user_id {

2 if user_id == id {

3 vc.id += 1

4

5 let body: MSGMessageBody = (message_text.containsOnlyEmoji && message_text.count

< 5) ? .emoji(message_text) : .text(message_text)

6

7 let message = MSGMessage(id: vc.id, body: body, user: vc.tim, sentAt: Date())

8 vc.insert(message)

9 }

10 }

When the user wants to send a message, another HTTP request is made, and the node is informed
to send the message:

1 func sendMessage(message: MSGMessage) {

2 if let text = message.body.rawValue as? String {

3 var requestString = "http://\(self.address)/message:" + processMessage(inString:

text) + "/source_id:" + self.this_user!.ID + "/target_id:"

4 requestString = requestString + self.recipient!.ID

5

6 print("Request: " + requestString)

7

8 Alamofire.request(requestString)

9 }

10 }

4.3.4 Real-time Map

The parsed user locations are also passed to MapViewController. This view adds annotations (pins
on the map) for each user online, according to their location:

1 func showLocations() {

2 for user in self.users {

3 let annotation = MKPointAnnotation()

4 annotation.title = user.name

5 annotation.coordinate = user.location

6 self.map.addAnnotation(annotation)

7 }

8 }

The map is saved on the phone’s memory. Hence the App is fully functional without any internet
connection. The resulting view is given below: Figure 5b and 5a show the conversation selection and
the message exchange. Figure 5c shows the real time map.

18

Group 5 Imperial College London Final Report

(a) List of available users (b) Private conversation (c) User location on map

Figure 5: Screenshots showing data being parsed by the App

4.4 Hardware

After deciding on the implementation of a decentralized system we had to consider the most appropri-
ate hardware to fit the budget and meet computing power specifications for the network. We utilized
the Arduino WiFi MKR 1010 as microcontroller since it consumes less power than a Raspberry Pi
and the extra computational capabilities of the Raspberry Pi were not needed. Furthermore, the
Arduino has both a WiFi module and a Lipo battery management system integrated on the board at
its affordable price. We choose the XBee modules over LoRa technology for its built-in support for
mesh network topology. We also chose a GPS module capable of UART transmission.

4.4.1 Assembly

Everything was first assembled on a breadboard as a prototype. Then, a PCB was considered to
implement our circuit (Figure 6), but due to supply shortages and high manufacturing prices, we
opted for a strip board. Virtual serial communication ports were utilized to interface the GPS module
with the Arduino. We drived the button LEDs in the with NPN BJTs, since the Arduino can only
supply 7mA and the LEDs need a minimum of 20 mA to be bright. We did not add current limiting
resistors since the LEDs are rated for 5 V. We configured the buttons to be active high by attaching
pull down resistors.
After building the circuit on strip boards we measured the dimensions and the enclosure was designed
to accommodate the circuit.

19

Group 5 Imperial College London Final Report

GPS

Radio	Link

Buzzer

Buttons

GND

GND

3.3V

3.3V

GND

GND

1k

1k

3.3V

3.3V

10
k

10
k

GND

3.3V

GND
VCC2

RX4
TX3

V_BAT5

PWR_CTRL6

GND1

U$1

VCC1

DOUT2

DIN3

DO84

RESET5

PWM0/RSSI6

PWM17

RESERVED8

DTR/DI89

GND10 AD4/DIO4 11
CTS/DIO7 12
ON/SLEEP 13

VREF 14
ASC/AD5/DIO5 15
RTS/AD6/DIO6 16

AD3/DIO3 17
AD2/DIO2 18
AD1/DIO1 19
AD0/DIO0 20

Q1

Q2

R1

R2

R
3

R
4

D0
D1
D2
*D3
D4
*D5
*D6
D7

D8
*D9

*D10
*D11
D12
D13

A0
A1
A2
A3
A4
A5

VIN
RESET

5V

AREF
GND
GND
GND

3.3V

IOREF

D14
SCL

VCC
MISO
MOSI
SCK
RESET
GND

WBTN
WBTN

RBTN

RBTN

WLED

WLED

RLED

RLED

Group	5

XBee

Main	Schematic
not	saved!

1/1Sheet:

A

B

C

D

1 2 3 4 5 6

A

B

C

D

1 2 3 4 5 6

Figure 6: Node’s circuit diagram. Note that the LiPo battery is not included in the diagram

4.4.2 Enclosure

The enclosure for our product was designed in Autodesk Fusion 360 with the intention to be 3D
printed using PLA. While designing the case the design criteria were to be kept in mind: the ability
to charge the battery/upload new code without needing to remove the circuitry; a method of keeping
the circuitry stable within the case so that it would not shake around and get damaged; sufficient
space so that we could fit all the circuitry inside but still be small enough to be carried around in a
large pocket or small bag; a lid that could be removed for occasional maintenance, but would stay
firmly attached otherwise; holes of a reasonable size to allow the buttons to smoothly interface with
the case and to allow the sound of the internal buzzer to be heard.

9

77

1
1

9

Ø

1

3

Ø

1

3

A

A (1:1)

2

8.5

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

11/03/2020A

10/03/202009/03/2020

1/1

Arunansu PatraICL EEE

PDF

Group 5
1.1Enclosure

Matthew Cooper

Figure 7: CAD drawing of the enclosure and lid. Generated with Fusion 360

To charge the battery/upload the code, a hole was added to the bottom of the case, where the
micro USB cable could be inserted to line up correctly with the port on the other side of the case. To
keep the circuit stable two slots were added on opposite sides of the case so that the board could easily

20

Group 5 Imperial College London Final Report

slide in and be supported within the case. These slots were positioned such that when the board was
inserted there would be room for the other, off-board components such as the buzzer and the battery.
The case ended up having approximate dimensions of 120x77x44mm, which we found could fit into
large pockets and bags. The lid was a simple design that relied on the friction generated by being
inserted into the box. This meant the lid could be removed with a little effort, but otherwise it would
stay in position perfectly and would not be loose. The holes for the buttons were designed with a
recess that allowed the back of the buttons to be flat against the side of the case and some small slits
were cut at the base, near the USB hole, so that the sound from the buzzer would be able to get out
of the case.

5 Project Management

As discussed in the preliminary report, as soon as we knew the problem we wanted to tackle, we started
our research and came up with a work breakdown structure (Figure 8). From there, we produced a
Gantt Chart (Section 9.5) that we have been updating throughout the project. We have been meeting
once a week to discuss the advances in the project, the next tasks to do, and dividing them between
members. We have mainly divided the group in technical stream and non-technical stream, as we will
discuss further in the next part. We communicated through a WhatsApp group and mainly worked
in the EEE labs.

Figure 8: Work breakdown structure

5.1 Workflow and Division of Tasks

As discussed in the previous part, we had some members working only on the technical side (writing
protocols, coding the App, and soldering), and other members in less technical tasks (research, project
management, budgeting, and creating new ideas for the project). We participated to the Imperial IC
Hack hackathon, where we made a lot of progress on the project and got a second prize for the best
hack for the community. This was very helpful as it propelled our project forward and gave us a more
thorough insight to the scope of our project and how much time we have to dedicate to it.

21

Group 5 Imperial College London Final Report

5.2 Cost of the Project

The total cost of the project was £305, with each device costing £81.65, well below the average of
satellite phones, which go for an average of above £500. So we have met the objective of reducing
costs compared to satellite phones. This is a breakdown of the cost of our project:

Figure 9: Pie chart showing cost of components

The current cost of the radio modules are just £11.59, so we could easily increase to a longer range
radio for a price still lower than satellite phones.

6 Extra Features of Our Product

In addition to our core communication system, we decided to add some extra features to improve
the capabilities of our product. Each of the subsections is divided into: how we implement it, what
advantages it brings, its cost, and its weak points.

6.1 GPS Module

There are different ways to implement geolocation. First of all, it can be done using the phone’s
satellite location. Our radio module is connected to the phone via the interfacing App, so we could
write a function that uses this location at all times, or at given moments. The problem with this
implementation is that we are always depending on the phone, and the whole point of the GPS
module is to be able to send a location in case of an emergency, and we don’t want to depend both on
the radio module and the phone. The second possible implementation uses an external GPS module.
We found the U-blox NEO 6 GPS module, which uses UART serial communication, and we can declare
an extra serial communication port in the Arduino to enable this communication. A big advantage
is that it allows the users to be located in emergencies, and locations can be shared between users.
There is no cost of using the phone’s GPS, while the cost of the U-blox NEO 6 is just below £15. The
only disadvantage is the added weight and complexity, which does not outweigh the proposed benefits
and low costs. We implemented this feature using the GPS module because it brings reassurance to
the users who will now not only be dependent on their phones in emergencies.

22

Group 5 Imperial College London Final Report

6.2 Emergency Button

The implementation is very basic: we simply need a button connected to our circuit and an extra
bit of code to send a the distress signal. One of the objectives of our product is to improve people’s
security in remote areas by providing access to a communication network where they can ask for help
if needed. If the phone battery runs out, the node can still send the user’s location and a distress signal
to all connected nodes. Those who receive these emergency messages can then call authorities and
provide help to this person. The downside of this solution is only the addition of a button in the case
which could get damaged in case it falls or gets wet through the extra opening. We will implement this
feature because the advantages outweigh the costs by much. In the future, the button may directly
alert authorities instead of sending a message to all the other users, improving the response time for
those in emergencies.

6.3 Buzzer for Alert

Some emergencies may be life-threatening, so instead of relying on people to check if they have any
messages, a loud buzzer can indicate an emergency. The implementation is very straightforward and is
explained in section 9.1.7. The advantage, as highlighted before, is a faster response to an emergency
situation, and it costs only £1. In terms of disadvantages, it only slightly adds more weight. We
implemented it because it is simple and very cheap.

6.4 On-Off Button

Lastly, an important functionality in the node is an on-off button. This is important as the node
drains a large amount of current when it is on, especially from the radio module, the Wi-Fi module,
and the GPS. For this reason. It is important to be able to switch the device off (a deep sleep
mode) to minimize the power consumption and increase battery duration, which is essential in off-grid
environments. Its implementation is thoroughly described in section 9.1.8.

7 Future Work

We are satisfied with the time management during the whole length of the project: we met all the
deadlines and completed the scheduled tasks, including all the extra features and refining the protocol.
If we continued with the project now, the next steps would be to continue implementing extra features
and add some wearable features. As a result, we would be able to target our product to our audience
more effectively.

7.1 Direct connection with emergency services

The idea is that the location of the user in distress can be sent directly to an emergency response
team. This connection can only be done if a node in the mesh network has access to a normal
telecommunication network. The implementation would not be simple: we would have to define
another protocol and use the phone connected to that device to send a signal to the emergency
response team. This would allow a faster response from a medical or rescue team. Furthermore, it
provides privacy for the user as their location is not sent to all the other users. The downside of this is
the difficulty behind this connection, and that we are using another user’s phone to send the message
to the emergency response team. Users should agree to this before using our modules.

23

Group 5 Imperial College London Final Report

7.2 LCD for Battery Status

Implementing this feature would require a battery display, which costs about £10. To measure the
battery level, we would measure the voltages at full charge and no charge (ie. as we are using 3.7
V batteries, the threshold voltages would go from 4.2 V (100% battery) to 3.0 V (0% battery)) and
study the rate of decline. Then we would connect the battery output to one of the analog ports of the
Arduino and display a different percentage depending on the voltage sensed by the Arduino. Optimal
battery management was a crucial part of our project. Access to a power source may be limited in
remote areas, so we need a long battery life and an indicator to show the remaining battery. On the
other hand, a display is quite difficult to incorporate into the casing and adds a significant weight.

7.3 Heart rate tracker

We could buy a heart rate tracking system, as implementing a heart rate tracker from circuit level
would be too complex and is not the objective of our project. In terms of advantages, it can be
connected to the emergency protocol, so that if the user has a cardiac problem, it would send an
emergency message. It could also be used to calculate the physical activity of our hikers and climbers,
and display such information in the App. The cost is very high: trackers with memory can cost up to
£70, and most users of our product will not find it very useful. The implementation at systems level
is also not simple, and it adds extra weight.

7.4 Route Calculator Using GPS

The idea behind this feature is for hikers to be able to see the route they have completed, the total
distance and their current altitude. We already have the GPS module, so recording the position every
five minutes and using downloaded maps would allow us to approximate the route taken. For the
altitude some device like a barometer would have to be bought and interfaced with the Arduino and
the App. In terms of advantages, a lot of useful information is provided to the users about their
routes, and a predicted route can even be extrapolated. The routes, altitude, and the extrapolated
information would also be displayed in the App. In terms of disadvantages, it is quite difficult to
interface to the App with the maps and the code would be quite difficult to write. Furthermore the
selected GPS module does not provide altitude, and either another module has to be chosen or a
barometer has to be added.

8 Conclusion

Overall, this project was a true success for us. We transformed our core idea that we had from the
beginning of the project into a physical, astonishingly reliably working prototype system. On top
of that, we added useful features that we didn’t originally think of. Of course, we have learnt most
from facing new challenges in the course of the project. Furthermore, we have applied our theoretical
knowledge from many of our courses during this project. From Communications Systems through
Software Engineering to Analogue Electronics, our project required us to gather all of our knowledge.
With our prototype we have laid a foundation to our solution to the problem of communication in
remote areas.

24

Group 5 Imperial College London Final Report

9 Appendices

9.1 Appendix A - Additional Protocols

9.1.1 Node Entry Protocol

The node entry protocol is a simple protocol used when a new node wants to enter the mesh network.
The actual entry procedure which allows the new node to be a part of the network and begin broad-
casting is explained under the Buffered Token System. This section will simply explain what is being
broadcasted by the new node as it first enters the network.

When a new node enters the network, it must provide details of its MAC Address, as well as the IP
Addresses of any local clients connected to it. This is done in a single string (ping) that is broadcasted
to the whole network, containing all of this information. As explained under the Ping Protocol above,
the information of the client is stored with the protocol:

clientInfo N = client name : {client name}/client ip : {client ip address}/client mac

{client mac address}

And, the client information component of this protocol, which contains the information of all of its
local clients is given by:

ping mac : {source mac address}/client : {clientInfo 1}/client : {clientInfo 2}/
.../client : {clientInfo N}

The source MAC Address represents the MAC Address of the node broadcasting the ping. After
broadcasting this message, other nodes in the network will receive and parse this information, storing
the information of the new node and all of its local clients in a 2-dimensional array (for more efficient
lookup complexity). This information will then be passed on to the client, as described under Network
Update and Message Reception Protocol in the Client-Server Communication section.

However, we must be careful that this new node does not broadcast at the same time as other
nodes in the network, which may cause the collision and corruption of data. This is dealt with under
the Buffered Token System section below.

9.1.2 Node Disconnect Protocol

The network must be able to identify nodes that have disconnected from the network and notify all
other nodes of this occurrence. However, as nodes that have disconnected are unable to broadcast this
event to the wider network, such process of two-way “handshake” or agreement between the nodes are
not possible to identify that a node has left the network.

Instead, the protocol uses a timeout procedure. Each node, at every given time interval, will send
a broadcast (or a ping) to the whole network to notify that it is still present in the network. The
protocol to detect a node that have disconnected is then quite straightforward. Each node will keep a
parallel lookup table of all the nodes that are present in the wide network as well as a timer associated
to each node. Whenever a node pings that they are still in the network, the timer for that node in
the lookup table is reset to 0. However, when any one node disconnects and stops sending pings, their
associated timer in the other nodes will continue to increase. As it reaches above a certain value, the
node will be terminated from the list of nodes in the network lookup table, indicating that the node
has disconnected from the network.

The code required to implement this is given as:

1 if(macTimer%20000 == 0){

25

Group 5 Imperial College London Final Report

2 for(int i = 1; i < currMacIndex; i++){ // don’t check index 0, since it is current

device

3 networkMacAddressTime[i] = networkMacAddressTime[i] + 20000; // increments timer

4 }

5 // check if any mac address is beyond a certain time limit and removes it from

network

6 for(int i = 1; i < currMacIndex; i++){

7 if(networkMacAddressTime[i] >= 50000){ // timeout set at around 30 seconds

8 for(int j = i; j < currMacIndex - 1; j++){

9 for(int k = 1; k < 11; k++){

10 networkMacAddress[j][k] = networkMacAddress[j+1][k];

11 }

12 networkMacAddressTime[j] = networkMacAddressTime[j+1];

13 }

14 for(int k = 0; k < 11; k++){

15 networkMacAddress[currMacIndex-1][k] = "";

16 }

17 networkMacAddressTime[currMacIndex-1] = NULL;

18 currMacIndex--;

19 }

20 }

21 }

9.1.3 Client Entry Protocol

As have been described previously, the unique identifier of a node is its MAC Address. However, the
unique identifier of a client in the local node is its IP Address. Alongside the lookup table of all the
clients and nodes within the mesh network, the node also stores information of all the local clients it
is serving in an array.

When a new client joins a network, a unique IP Address is assigned to it. A simple client entry
protocol then is to check whether this IP Address already exists in our list of available clients. If
it is, then do nothing (in fact, a timer will be used to check for client disconnect, described in the
Client Disconnect Protocol below). if it is not in the array, then the node will add this information
into its list, along with the client’s name and its unique client ID. Afterwards, this information will
be broadcasted by the node ping to the wide network to notify of a new client.

Other nodes will then parse this information and store this new client information in its own lookup
table. It will then serve the information about this new client to all of its own local clients, allowing
messages to be sent between them.

9.1.4 Client Disconnect Protocol

The protocol to identify a client that has disconnected from the network is similar to that used in the
Node Disconnect Protocol, in which a timeout procedure is used instead of a two-way “handshake”
agreement.

A parallel array of timers is used alongside the array of clients (identified by its IP Address) in
the local node. Whenever a client requests for information about the network, the timer for that
particular client is reset (the client App is programmed to request network information once every 10
seconds).

If the client stops requesting this information (i.e. it has disconnected from the network), the
timer for that client will continue to increase until it is above a certain threshold. At this point, the
client information will be terminated from the local node. This information will then be broadcasted

26

Group 5 Imperial College London Final Report

by ping to the wider network, and the information of the disconnected client will be removed from
every other node in the network.

The code to implement the client timeout in the local node is given by:

1 // --- Checks Local Clients for Timeout ---

2 if(macTimer%5000 == 0){

3 for(int i = 0; i < currClientIndex; i++){

4 clientTime[i] = clientTime[i] + 5000; // increments client timer

5 if(clientTime[i] >= 50000){ // timeout set at around 30 seconds

6 for(int j = i; j < currClientIndex - 1; j++){

7 clientTime[j] = clientTime[j + 1];

8 }

9 clientTime[currClientIndex - 1] = NULL;

10 currClientIndex--;

11 }

12 }

13 }

9.1.5 Message Reception Protocol

This section describes the parsing procedure of the received messages given under the Ping Protocol,
and how individual messages are sent to its associated target client. As described previously, the
general form of the message component of this broadcast is given by:

messageInfo 1/messageInfo 2/. . . /messageInfo N

Where messageInfo N describes the N-th message in the message queue sent by clients within the
node. This in itself has the protocol:

messageInfo N = /message : {message}/target ip : {destination IP address}/target mac :

{destination mac address}/source id : {source id}

As all nodes in the network will receive this ping, it is essential then to identify which messages belong
to which node, and which messages belong to which clients. Firstly, a filter is used which checks if
the message target MAC address is equal to the MAC address of the receiver node. If it is not, this
message is simply discarded. If it is, it is stored in a second message queue (note, a message queue
is used for both messages being transmitted, and messages received). This is necessary as the clients
request this information once every 10s and does not want the message immediately.

After placing all of the messages in this queue, a second filter is used, which checks if the message
target IP Address is equal to the IP Address of the client the server is currently serving. If it is not
equal, the message is ignored (but not discarded). If it is equal, then this is the correct destination
client, and the message is passed on in JSON format to the client.

Since the JSON format has the form:

{”Type”: ”Users”,
”Data”:[{”Name”:”Name Here”, ”ID”:”ID here”, ”Location”:”Location Here”}],
”Messages”:[{”Source ID”:”Source ID Here”,”Message”:”Message Here”}],
”Emergency”:[{”Location”:”Location Here}]

}

27

Group 5 Imperial College London Final Report

The client only requires information of the message itself, as well as the sender client’s ID. Hence,
after identifying the correct client, the MAC Address and IP Address of the client is no longer needed
and is discarded; only the source ID and the message is sent to the client.

After sending the message to the correct client, the message is discarded from the message queue,
so no duplicate messages are sent.

9.1.6 Overcoming the Arduino Serial Buffer Limit

One main drawback of using a standalone protocol described in the Ping Protocol is the length of
each broadcast. As shown previously, the protocol is given by:

ping mac : {sourcemacaddress}/client : {clientInfo 1}/client : {clientInfo 2}/.../client : {clientInfo N}
/{messageInfo 1}/{messageInfo 2}/. . . /{messageInfo N}/token : {token}/finish protocol

The main issue with using this protocol is the limitation of the Arduino. The Arduino serial port has
a buffer which can at max hold up to 60 bytes of information (equivalent to 60 characters in a string).
If the buffer receives more information than this limit, the message will be cut off and the information
will be lost. Since each ping broadcast will likely take more than 60 bytes of information, this is a
clear issue for our standalone protocol.

The solution then is to read serial data faster than new data is being placed in the serial buffer.
To do this, we must introduce the string “finish protocol” at the end of every ping. This is crucial
to indicate the end of a ping broadcast, so the node will continue reading more and more serial data
until this end-of-ping indicator is reached. Previously, an asynchronous delay is used to wait for the
buffer to be filled before beginning to read the serial data, but this method is extremely unreliable
and often leads to corrupted data. Without this indicator, the system will endlessly attempt to read
serial data without knowing the end of the ping broadcast.

The code function used to receive serial data using this protocol is given by:

1 void readSerialMessage(){

2 int timer = 0;

3 if(Serial1.available() > 0){ // continues reading serial message until /finish_protocol

is detected

4 while(incomingMessage.indexOf("/finish_protocol") == -1 && timer < 20000 &&

incomingMessage.indexOf("\n") == -1){

5 while(Serial1.available() > 0){

6 char c = Serial1.read();
7 incomingMessage.concat(c);

8 }

9 timer++;

10 }

11 }

12 }

The timer is present so that the system can break out of the while loop in the event of a glitch / data
corruption that prevents the detection of ”/finish protocol” at the end of ping broadcasts.

9.1.7 GPS and Emergency Broadcast

An additional feature to the node is a GPS to track the location of users in the network. This is an
important feature in emergency situations, as it allows other users in the network to track the location
of the person in need of help. The coordinates of each user is updated and sent to the client, after
which it will be displayed in a map to show all users connected in the network.

28

Group 5 Imperial College London Final Report

Additionally, the emergency functionality is added using an external button. This button, if held
for three seconds, will begin transmitting emergency signal to all nodes in the network for a duration
of 30 seconds. To indicate that the broadcasting process is working, the LED of the button will turn
red. This is easily implemented, and the full code segment can be observed in section 9.2.3 of the
appendix.

If the button is held for 3 seconds, the boolean variable broadcastEmergency will be set to true,
which allows the device to begin transmitting emergency signals. This emergency signal will be added
into the ping broadcast protocol before the token segment. This is shown below.

ping mac : {sourcemacaddress}/client : {clientInfo 1}/client : {clientInfo 2}/.../client : {clientInfo N}
/{messageInfo 1}/{messageInfo 2}/. . . /{messageInfo N}/emergency broadcast : {Location}

/token : {token}/finish protocol

This addition in the ping broadcast protocol is handled upon the broadcasting process by first checking
if the boolean variable broadcastEmergency is true:

1 if(broadcastEmergency){

2 broadcast = broadcast + "/emergency_broadcast:" + nodeLocation;

3 }

Upon reception of this emergency broadcast from other nodes, the information about the emergency
broadcast (including its location of origin) will be parsed and sent to the client, which in turn will be
displayed in a map. In addition to this, if any emergency broadcast is detected by the node, a beeper
will be triggered, which will produce a pulsating alarm noise to notify users throughout the network
that someone is in need of assistance. This beeping process is easily implemented after detecting an
emergency signal by alternating the digital output of the beeper between low and high every 0.25s.
This can also be observed in section 9.2.3 of the appendix.

9.1.8 On-Off Device Handler

Lastly, an important functionality in the node is the on-off button. This is important as the node
drains a large amount of current when it is on, including a significant portion from the radio module,
the Wi-Fi module, as well as the GPS. If it is kept on constantly, the total current that is drained
from the battery amounts to approximately 100mA. Given the LiPo battery capacity of 2000mAh,
this will only last for 20h given the battery was initially fully charged. To improve upon this, it is
important to be able to switch the arduino to low power mode when the node is unused.

For this, the library ArduinoLowPower is used, in which the arduino can be switched into deep
sleep mode upon holding the on-off button for 3s. The device can be awaken by using a digital
interrupt by clicking the on-off button again (the interrupt will be triggered on the falling edge of the
on-off pulse). In addition to putting the module to sleep, the Wi-Fi module will also be turned off
to further reduce power consumption. The code implementation of this is relatively straightforward,
and can be observed below.

1 ...

2 // this interrupt is declared on setup

3 LowPower.attachInterruptWakeup(onPin, intermediate, FALLING);

4

5 // --- Turns Arduino to Low Power Mode ---

6 if(digitalRead(onPin) == LOW){

7 currentMillis = millis();

8 if(!onCounting){

9 onCounting = true;

10 onTimerMillis = millis();

29

Group 5 Imperial College London Final Report

11 }

12 if(currentMillis - onTimerMillis > 3000 && !sleepMode){

13 digitalWrite(onLED, LOW);

14 sleepMode = true;

15 WiFi.end(); // turns Wi-Fi module off

16 LowPower.deepSleep(); // switches arduino to deep sleep mode

17 }

18 }

19 else{

20 digitalWrite(onLED, HIGH);

21 onCounting = false;

22 if(sleepMode == true){

23 initialStartup(); // restarts the Wi-Fi network after arduino wakes up

24 sleepMode = false;

25 }

26 }

By switching the Arduino and Wi-Fi module off, the current consumed by the module is brought down
to approximately 10mA, meaning the device can theoretically last 200h in the off state before it needs
proper recharging.

9.2 Appendix B - Node Source Code

9.2.1 Full Backend Code

1 /*
2 Project Name: Group 5 Client Communication

3

4 Version: 16

5

6 Summary: Handles local communication between different clients using a series of HTTP

POST requests (from clients). Messages

7 received by the Arduino is temporarily held in a message queue, which is then

sent from the Arduino to the local client

8 via JSON, whose response content can be detected and parsed by the app.

9

10 Default Web Server IP Address: 192.168.4.1

11

12 Client Protocols: There are three main protocols shared by the arduino and the client

for bidirectional communication.

13 1. Client Initialization Protocol: /client_name:{your name here}/client_id:{your id

here}

14 2. Message Sending Protocol: /message:{your message here}/source_id:{source id}/

target_id:{target id}

15 3. Network Update and Message Reception Protocol: returns JSON information of

clients and available messages.

16 When receiving the message, it

will be in the form:

17 message:{message here}/source_id

:{source id here}

18

19 Communication Protocol: The main protocol used for the communication system is a token

buffer protocol.

20 These tokens are sent along with radio broadcasts and allows

only the nodes

30

Group 5 Imperial College London Final Report

21 with a valid token to transmit messages. This terminates the

possibility

22 of collision during data reception. Tokens have the form

1-2-3-4-5-....-N-0,

23 where each number represents a node ID within the network, and

the 0 token

24 represents a delay timer to allow new users into the network.

25 */

26

27 #include <SPI.h>

28 #include <WiFiNINA.h>

29 #include <TinyGPS.h>

30 #include <ArduinoLowPower.h>

31 #include <Arduino.h>

32 #include <wiring_private.h>

33 #include <variant.h>

34 #define PIN_SERIAL_RX (7) // Pin description number for PIO_SERCOM

on 7

35 #define PIN_SERIAL_TX (6) // Pin description number for PIO_SERCOM

on 6

36 #define PAD_SERIAL_TX (UART_TX_PAD_2) // SERCOM pad 2 TX

37 #define PAD_SERIAL_RX (SERCOM_RX_PAD_3) // SERCOM pad 3 RX

38

39

40 /* Network Variables */

41 char ssid[] = "TestNet2"; // your network SSID (name)

42 int keyIndex = 0; // your network key Index number (needed only for WEP)

43 byte mac[6];

44 int status = WL_IDLE_STATUS;

45 WiFiServer server(80);

46

47 /* Communication Protocol Variables */

48 String currToken = "";

49 String nodeID = "2";

50 unsigned long startMillis;

51 unsigned long currentMillis;

52 bool startTimer = true;

53 bool loneBroadcaster = true;

54 int randomInitialTimer = 0;

55

56 /* Client Protocol Variables */

57 String clientArray[10]={""}; // static array for client information (ip address and name)

(currently handles 10 clients at max)

58 String messageQueue[50]={""}; // places all incoming messages in a queue, since Arduino

operation is not asynchronous

59 String networkMacAddress[20][11];

60 String currMacAddress = "";

61 String messageSendList[30]={""}; // protocol is /message:(your message)/target_ip:(

destination ip)/target_mac:(destination mac)/source_id:(source id)

62 String incomingMessage = "";

63 int networkMacAddressTime[20]; // this is in form client_name:(client name)/client_id:(

client id)/client_ip:(client ip)/client_mac:(client mac)

64 int clientTime[10] = {NULL};

65 int currClientIndex = 0;

66 int currMessageIndex = 0;

67 int currMacIndex = 0;

31

Group 5 Imperial College London Final Report

68 int currMessageSendIndex = 0;

69 int macTimer = 0; // counts up and checks all mac addresses

70

71 /* GPS and Emergency Protocol Variables*/

72 Uart gpsSerial(&sercom3, PIN_SERIAL_RX, PIN_SERIAL_TX,PAD_SERIAL_RX , PAD_SERIAL_TX); //

Create the new UART instance assigning it to pin 0 and 1

73 TinyGPS gps;

74 String nodeLocation = "0.000000;0.000000"; // MUST FILL THIS NEW VARIABLE WITH LOCATION

75 String emergencyLocations[20];

76 bool broadcastEmergency = false;

77 bool buttonCounting = false;

78 bool onCounting = false;

79 bool sleepMode = false;

80 float lat;

81 float lon;

82 int currEmergencyIndex = 0;

83 const int beeperPin = 1; // pin for beeper

84 const int emergencyPin = 2; // pin for emergency button

85 const int onPin = 8; // to switch to low power mode

86 const int emergencyLED = 4;

87 const int onLED = 5;

88 unsigned long startBeeperTimer;

89 unsigned long startEmergencyTimer;

90 unsigned long endEmergencyTimer;

91 unsigned long checkBeeperMillis;

92 unsigned long onTimerMillis;

93

94 /* Access Point Setup */

95 void setup() {

96 //Initialize serial and wait for port to open:

97 Serial.begin(9600);
98 Serial1.begin(9600);
99 gpsSerial.begin(9600);

100 pinMode(emergencyPin, INPUT_PULLUP);

101 pinMode(onPin, INPUT_PULLUP);

102 pinMode(beeperPin, OUTPUT);

103 pinMode(emergencyLED, OUTPUT);

104 pinMode(onLED, OUTPUT);

105 pinPeripheral(PIN_SERIAL_TX, PIO_SERCOM);

106 pinPeripheral(PIN_SERIAL_RX, PIO_SERCOM_ALT);

107 initialStartup();

108 LowPower.attachInterruptWakeup(onPin, intermediate, FALLING);

109 }

110

111 void intermediate(){

112 // do nothing

113 }

114

115 void initialStartup() {

116 // resets all the variables

117 digitalWrite(onLED, HIGH);

118 clientArray[10]={""};

119 messageQueue[50]={""};

120 currMacAddress = "";

121 messageSendList[30]={""};

122 incomingMessage = "";

32

Group 5 Imperial College London Final Report

123 clientTime[10] = {NULL};

124 currClientIndex = 0;

125 currMessageIndex = 0;

126 currMacIndex = 0;

127 currMessageSendIndex = 0;

128 macTimer = 0;

129 startTimer = true;

130 loneBroadcaster = true;

131 randomInitialTimer = 0;

132

133 checkBeeperMillis = millis();

134 Serial.println("Access Point Web Server");

135 // check for the WiFi module:

136 if(WiFi.status() == WL_NO_MODULE) {

137 Serial.println("Communication with WiFi module failed!");

138 while (true);

139 }

140 String fv = WiFi.firmwareVersion();

141 if (fv < WIFI_FIRMWARE_LATEST_VERSION) {

142 Serial.println("Please upgrade the firmware");

143 }

144 Serial.print("Creating access point named: ");

145 Serial.println(ssid);
146 // Create open network. Change this line if you want to create an WEP network:

147 status = WiFi.beginAP(ssid);

148 if (status != WL_AP_LISTENING) {

149 Serial.println("Creating access point failed");

150 // don’t continue

151 while (true);

152 }

153 // wait 10 seconds for connection:

154 delay(10000);

155 // start the web server on port 80

156 server.begin();

157 // you’re connected now, so print out the status

158 printWiFiStatus();

159

160 /* Generate Mac Address for Arduino */

161 WiFi.macAddress(mac);

162 for(int i = 5; i >=0; i--){

163 currMacAddress = currMacAddress + String(mac[i]);

164 if(i !=0){

165 currMacAddress = currMacAddress + ".";

166 }

167 }

168 // immediately put current mac address as the first address in the array

169 networkMacAddress[0][0] = currMacAddress;

170 // Initially flush all Serial data to avoid error in reception

171 while(Serial.available() > 0) {

172 char t = Serial.read();
173 }

174 // check if any other nodes present in network

175 int checkBroadcastTimer = 0;

176 while(Serial.available() == 0 && checkBroadcastTimer >= 5000){

177 checkBroadcastTimer++;

178 delay(1);

33

Group 5 Imperial College London Final Report

179 }

180 readSerialMessage();

181 if(incomingMessage.indexOf("/token:") != -1){

182 loneBroadcaster = false; // if other tokens present in network, indicate this

183 int tokenIndex = incomingMessage.indexOf("/token:");

184 int finishIndex = incomingMessage.indexOf("/finish_protocol");

185 currToken = incomingMessage.substring(tokenIndex + 7, finishIndex);

186 }

187 else{

188 currToken = nodeID + "-0"; // initialize token for lone broadcaster: X-0

189 Serial.println("I am alone");

190 }

191 }

192

193 void loop() {

194 // --- Turns Arduino to Low Power Mode ---

195 if(digitalRead(onPin) == LOW){

196 currentMillis = millis();

197 if(!onCounting){

198 onCounting = true;

199 onTimerMillis = millis();

200 }

201 if(currentMillis - onTimerMillis > 3000 && !sleepMode){

202 digitalWrite(onLED, LOW);

203 sleepMode = true;

204 WiFi.end();

205 LowPower.deepSleep();

206 }

207 }

208 else{

209 digitalWrite(onLED, HIGH);

210 onCounting = false;

211 if(sleepMode == true){

212 initialStartup();

213 sleepMode = false;

214 }

215 }

216

217 if (status != WiFi.status()) {

218 // it has changed update the variable

219 status = WiFi.status();

220 if (status == WL_AP_CONNECTED) {

221 // a device has connected to the AP

222 Serial.println("Device connected to AP");

223 } else {

224 // a device has disconnected from the AP, and we are back in listening mode

225 Serial.println("Device disconnected from AP");

226 }

227 }

228 WiFiClient client = server.available(); // listen for incoming clients

229 if (client) {

230 // obtain client IP in String Format

231 String clientIP = "";

232 for(int i = 0; i < 4; i++){

233 clientIP = clientIP + client.remoteIP()[i];

234 if(i!=3){

34

Group 5 Imperial College London Final Report

235 clientIP = clientIP + ".";

236 }

237 }

238 Serial.println("new client");

239 String currentLine = "";

240 boolean currentLineIsBlank = true;

241 while (client.connected()) {

242 if (client.available()){

243 char c = client.read();

244 Serial.write(c);
245 if (c == ’\n’ && currentLineIsBlank) {

246 /* JSON Data and Parsing */

247 /*
248 {"Type": "Users",

249 "Data":[{"Name":"Name Here", "ID":"ID here", "Location":"Location here"}],

250 "Messages":[{"Source ID":"Source ID Here", "Message":"Message Here"}],

251 "Emergency":[{"Location":"Location here"}, {"Location":"Location here"}]

252 }

253 */

254 client.println("HTTP/1.1 200 OK");

255 client.println("Content-Type: application/json");

256 client.println("Access-Control-Allow-Origin: *");

257 client.println("Refresh: 2");

258 client.println("");

259

260 // --- Obtains Message From Client ---

261 // clientMessage has form: /message:(your message here)/source_id:(source id)/

target_id:(target id)

262 int startIndex = currentLine.indexOf("GET /");

263 int endIndex = currentLine.indexOf("HTTP/1.1");

264 String clientMessage = currentLine.substring(startIndex + 5, endIndex);

265 clientMessage.replace("%20", " ");

266 Serial.println(clientMessage);
267

268 // --- Handles Client Request for Updated Data ---

269 if(clientMessage.indexOf("update_data")!= -1){

270 bool deleteComma = false;

271 // attaches all connected users in network to JSON

272 String finalJson = "{\"Type\": \"Users\",\"Data\":[";

273 for(int i = 0; i < currMacIndex; i++){

274 for(int k = 1; k < 11; k++){

275 // networkMacAddress in form client_name:(client name)/client_id:(client

id)/client_ip:(client ip)/client_loc:(client location)/client_mac:(client mac)/

276 if(networkMacAddress[i][k] != ""){

277 deleteComma = true;

278 int indexName = networkMacAddress[i][k].indexOf("client_name:");

279 int indexID = networkMacAddress[i][k].indexOf("client_id:");

280 int indexIP = networkMacAddress[i][k].indexOf("client_ip:");

281 int indexLoc = networkMacAddress[i][k].indexOf("client_loc:");

282 int indexMac = networkMacAddress[i][k].indexOf("/client_mac:");

283 String clientLocation = networkMacAddress[i][k].substring(indexLoc+11,

indexMac);

284 String clientName = networkMacAddress[i][k].substring(indexName+12,

indexID-1);

285 String clientID = networkMacAddress[i][k].substring(indexID+10,indexIP

-1);

35

Group 5 Imperial College London Final Report

286 finalJson = finalJson + "{\"Name\":\"" + clientName + "\", \"ID\":\"" +

clientID + "\", \"Location\":\"" + clientLocation + "\"},";

287 }

288 }

289 }

290 if(deleteComma){

291 finalJson.remove(finalJson.length()-1);

292 deleteComma = false;

293 }

294 finalJson = finalJson + "], \"Messages\":[";

295 // Releases messageQueue to JSON requested by client

296 // messageQueue of form /message:(your message)/target_ip:(destination ip)/

target_mac:(destination mac)/source_id:(source id)

297 // message output to app has general form /message:(your message)/target_id:(

target id)

298 // Need to search in client table for this target id and obtain corresponding

ip and mac address

299 for(int i = 0; i < currMessageIndex; i++){

300 int indexIP = messageQueue[i].indexOf("target_ip:");

301 int indexMac = messageQueue[i].indexOf("target_mac:");

302 String targetIP = messageQueue[i].substring(indexIP+10, indexMac-1);

303 targetIP.replace(" ", "");

304 targetIP.replace("\r", "");

305 targetIP.replace("/", "");

306 if(targetIP == clientIP){

307 deleteComma = true;

308 int indexMessage = messageQueue[i].indexOf("message:");

309 int indexID = messageQueue[i].indexOf("source_id:");

310 String message = messageQueue[i].substring(indexMessage + 8, indexIP - 1)

;

311 String sourceID = messageQueue[i].substring(indexID + 10);

312 sourceID.replace(" ", "");

313 sourceID.replace("\r", "");

314 finalJson = finalJson + "{\"Source ID\":\"" + sourceID + "\", \"Message

\":\"" + message + "\"},";

315 for(int k = i; k < currMessageIndex; k++){

316 messageQueue[k] = messageQueue[k + 1];

317 }

318 // moves message queue forwards once it is sent to JSON

319 messageQueue[currMessageIndex] = "";

320 currMessageIndex--;

321 i--;

322 }

323 }

324 if(deleteComma){

325 finalJson.remove(finalJson.length()-1);

326 deleteComma = false;

327 }

328 if(currEmergencyIndex != 0){

329 deleteComma = true; // if emergency list is not empty, delete last comma

330 }

331 finalJson = finalJson + "], \"Emergency\":[";

332 for(int i = 0; i < currEmergencyIndex; i++){

333 finalJson = finalJson + "{\"Location\":\"" + emergencyLocations[i] + "\"},"

;

334 }

36

Group 5 Imperial College London Final Report

335 if(deleteComma){

336 finalJson.remove(finalJson.length()-1);

337 deleteComma = false;

338 }

339 finalJson = finalJson + "]}";

340 finalJson.replace("\n", "");

341 Serial.println("final JSON: " + finalJson);

342 client.println(finalJson);

343 }

344 // --- Handles Client Message Transmission ---

345 // send message if it does not contain an automatic "favicon.ico" response from

web server

346 // messageQueue has the general form /message:(your message)/target_ip:(

destination ip)/target_mac:(destination mac)/source_id:(source id)

347 if(clientMessage.indexOf("favicon.ico") == -1 && clientMessage.indexOf("

target_id:") != -1){

348 int indexTargetID = clientMessage.indexOf("target_id:");

349 String targetID = clientMessage.substring(indexTargetID + 10);

350 targetID.replace(" ", "");

351 String targetMac = "";

352 String targetIP = "";

353 // networkMacAddress has form /client_name:(client name)/client_id:(client id

)/client_ip:(client ip)/client_loc:(client location)/client_mac:(client mac)

354 for(int i = 0; i < currMacIndex; i++){

355 for(int k = 1; k < 11; k++){

356 if(networkMacAddress[i][k].indexOf(targetID) != -1){

357 int indexMac = networkMacAddress[i][k].indexOf("client_mac:");

358 int indexID = networkMacAddress[i][k].indexOf("client_id:");

359 int indexIP = networkMacAddress[i][k].indexOf("client_ip:");

360 int indexLoc = networkMacAddress[i][k].indexOf("client_loc:");

361 targetMac = networkMacAddress[i][k].substring(indexMac+11);

362 targetMac.replace(" ", "");

363 targetIP = networkMacAddress[i][k].substring(indexIP+10,indexLoc-1);

364 break;

365 }

366 }

367 }

368 Serial.println("targetMac:" + targetMac);

369 Serial.println("targetIp:" + targetIP);

370 if(targetMac != "" && targetIP != ""){

371 // the input clientMessage is /message:(your message)/source_id:(source id)

/target_id:(target id)

372 // clientMessage output here will now have the same protocol as in

messageQueue

373 // which is /message:(your message)/target_ip:(destination ip)/target_mac:(

destination mac)/source_id:(source id)

374 int indexSourceID = clientMessage.indexOf("source_id:");

375 int indexTargetID = clientMessage.indexOf("target_id:");

376 String sourceID = clientMessage.substring(indexSourceID+10,indexTargetID-1)

;

377 clientMessage = clientMessage.substring(0, indexSourceID - 1);

378 clientMessage = clientMessage + "/target_ip:" + targetIP + "/target_mac:" +

targetMac + "/source_id:" + sourceID;

379 clientMessage.replace("\n", "");

380 // if the targetMac is equal to Current Mac Address, we store in local

messageQueue

37

Group 5 Imperial College London Final Report

381 if(targetMac == currMacAddress){

382 messageQueue[currMessageIndex] = clientMessage;

383 currMessageIndex++;

384 }

385 // if target mac is a different node, broadcast it out to other nodes

386 else{

387 messageSendList[currMessageSendIndex] = clientMessage;

388 currMessageSendIndex++;

389 }

390 }

391 }

392

393 // --- Handles New Client to the Local Network ---

394 // input is /client_name:(name)/client_id:(id)

395 // clientArray has form /client_name:(client name)/client_id:(client id)/

client_ip:(client ip)/client_loc:(client location)

396 // clientMessage has the form client_name:(client name)/client_id:(client id)

397 if((clientMessage.indexOf("client_name:") != -1) && (clientMessage.indexOf("

client_id:") != -1)){

398 bool newClient = true;

399 int indexID = clientMessage.indexOf("client_id:");

400 String clientID = "client_id:" + clientMessage.substring(indexID + 10);

401 String clientInfo = clientMessage + "/client_ip:" + clientIP;

402 clientInfo.replace(" ", "");

403 clientID.replace(" ", "");

404 for(int k = 0; k < currClientIndex; k++){

405 // if client already exists in list, do not add it again

406 if(clientArray[k].indexOf(clientID) != -1){

407 newClient = false;

408 }

409 }

410 if(newClient){

411 clientInfo = clientInfo + "/client_loc:" + nodeLocation;

412 clientArray[currClientIndex] = clientInfo;

413 currClientIndex++;

414 }

415 }

416

417 // --- Refreshes Local Client Connection Status ---

418 for(int i = 0; i < currClientIndex; i++){

419 if(clientArray[i].indexOf(clientIP) != -1){

420 clientTime[i] = 0;

421 break;

422 }

423 }

424 break;

425 }

426 if (c == ’\n’) {

427 currentLineIsBlank = true;

428 }

429 else if (c != ’\r’) {

430 currentLineIsBlank = false;

431 currentLine += c;

432 }

433 }

434 }

38

Group 5 Imperial College London Final Report

435 // close the connection:

436 client.stop();

437 Serial.println("client disonnected");

438 }

439 macTimer++;

440

441 // --- Handles Incoming Message from Other Nodes ---

442 incomingMessage = "";

443 readSerialMessage();

444

445 // --- Handles Incoming Mac Address Pings ---

446 if(incomingMessage.indexOf("ping_mac:") != -1){

447 int emergencyIndex = incomingMessage.indexOf("/emergency_broadcast:");

448 int tokenIndex = incomingMessage.indexOf("/token:");

449 int finishIndex = incomingMessage.indexOf("/finish_protocol");

450 if(emergencyIndex != -1){

451 endEmergencyTimer = millis();

452 String emergencyLoc = incomingMessage.substring(emergencyIndex+21, tokenIndex);

453 bool found = false;

454 for(int i = 0; i < currEmergencyIndex; i++){

455 if(emergencyLocations[i] == emergencyLoc){

456 found = true;

457 }

458 }

459 if(!found){

460 emergencyLocations[currEmergencyIndex] = emergencyLoc;

461 currEmergencyIndex++;

462 }

463 }

464 startTimer = true; // must reset this if multiple users try to join network

465 currToken = incomingMessage.substring(tokenIndex + 7, finishIndex);

466 Serial.println("Current Token: " + currToken);

467 incomingMessage = incomingMessage.substring(0, tokenIndex);

468 int indexEndMac = incomingMessage.indexOf("/");

469 int indexStartPingMac = incomingMessage.indexOf("ping_mac:");

470 String pingMac = incomingMessage.substring(indexStartPingMac + 9, indexEndMac);

471 bool newMac = true;

472 int indexRefreshMac;

473 for(int i = 0; i < currMacIndex; i++){

474 if(networkMacAddress[i][0] == pingMac){

475 networkMacAddressTime[i] = 0;

476 newMac = false;

477 indexRefreshMac = i;

478 }

479 }

480 if(newMac){

481 indexRefreshMac = currMacIndex;

482 }

483 networkMacAddress[indexRefreshMac][0] = pingMac;

484 if(incomingMessage.indexOf("/client:") != -1){

485 int clientIndexBottom = incomingMessage.indexOf("client:") + 7;

486 int clientIndexTop = incomingMessage.indexOf("client:", clientIndexBottom);

487 int i = 1;

488 // will store in networkMacAddress in the form client_name:(client name)/client_ip

:(client ip)/client_loc:(client location)/client_mac(client mac)

489 while(clientIndexTop != -1){

39

Group 5 Imperial College London Final Report

490 String newClientInfo = incomingMessage.substring(clientIndexBottom,

clientIndexTop)+ "/client_mac:" + pingMac;

491 newClientInfo.replace(" ", "");

492 networkMacAddress[indexRefreshMac][i] = newClientInfo;

493 clientIndexBottom = clientIndexTop + 7;

494 clientIndexTop = incomingMessage.indexOf("client:", clientIndexBottom);

495 i++;

496 }

497 for(int k = i; k < 11; k++){

498 networkMacAddress[indexRefreshMac][k] = "";

499 }

500 int messageIndex = incomingMessage.indexOf("/message:");

501 if(messageIndex == -1){

502 networkMacAddress[indexRefreshMac][i] = incomingMessage.substring(

clientIndexBottom)+ "/client_mac:" + pingMac;

503 }

504 else{

505 networkMacAddress[indexRefreshMac][i] = incomingMessage.substring(

clientIndexBottom, messageIndex)+ "/client_mac:" + pingMac;

506 }

507 networkMacAddressTime[indexRefreshMac] = 0;

508 }

509 if(newMac){

510 currMacIndex++;

511 }

512 }

513

514 // --- Handles Client Emergency Broadcast ---

515 if(digitalRead(emergencyPin) == LOW){

516 if(!buttonCounting){

517 buttonCounting = true;

518 startBeeperTimer = millis();

519 }

520 currentMillis = millis();

521 if(currentMillis - startBeeperTimer > 3000){ // must hold button for 3s

522 broadcastEmergency = true;

523 buttonCounting = false;

524 startEmergencyTimer = millis();

525 }

526 }

527 else{

528 buttonCounting = false;

529 }

530

531 // --- Broadcasts Emergency Signal for 30 seconds ---

532 if(broadcastEmergency){

533 digitalWrite(emergencyLED, HIGH);

534 // maybe make LED light up to indicate you are broadcasting emergency?

535 currentMillis = millis();

536 if(currentMillis - startEmergencyTimer > 20000){

537 broadcastEmergency = false;

538 }

539 }

540 else{

541 digitalWrite(emergencyLED, LOW);

542 }

40

Group 5 Imperial College London Final Report

543

544 // --- Triggers Beeper if Emergency Detected ---

545 if(currEmergencyIndex > 0){

546 currentMillis = millis();

547 if(currentMillis - checkBeeperMillis > 250){

548 checkBeeperMillis = millis();

549 if(digitalRead(beeperPin) == HIGH){

550 digitalWrite(beeperPin, LOW);

551 }

552 else{

553 digitalWrite(beeperPin, HIGH);

554 }

555 }

556 }

557 else{

558 digitalWrite(beeperPin, LOW);

559 }

560

561 // --- Handles Message Inputs from Other Nodes ---

562 // message input in form /message:(your message)/target_ip:(destination ip)/target_mac

:(destination mac)/source_id:(source id)

563 int messageIndexBottom = incomingMessage.indexOf("/message:");

564 int messageIndexTop = incomingMessage.indexOf("/message:", messageIndexBottom + 7);

565 while(messageIndexBottom != -1){

566 int macIndexStart = incomingMessage.indexOf("target_mac:", messageIndexBottom);

567 int macIndexEnd = incomingMessage.indexOf("source_id:", messageIndexBottom);

568 String targetMac = incomingMessage.substring(macIndexStart + 11, macIndexEnd-1);

569 String newMessage;

570 if(messageIndexTop != -1){

571 newMessage = incomingMessage.substring(messageIndexBottom, messageIndexTop);

572 }

573 else{

574 newMessage = incomingMessage.substring(messageIndexBottom);

575 }

576 messageIndexBottom = messageIndexTop;

577 messageIndexTop = incomingMessage.indexOf("/message:", messageIndexBottom + 7);

578 Serial.println("NEW MESSAGE");

579 Serial.println(newMessage);
580 targetMac.replace(" ", "");

581 currMacAddress.replace(" ", "");

582 if(targetMac == currMacAddress){

583 messageQueue[currMessageIndex] = newMessage;

584 currMessageIndex++;

585 }

586 }

587

588 // --- Handles Token Push and Broadcasts ---

589 if(currToken.startsWith(nodeID)){

590 delay(100);

591 broadcastPing(); // broadcasts that device is still in network

592 }

593 else if(currToken.indexOf(nodeID) == -1){

594 if(currToken.startsWith("0")){

595 if(startTimer){

596 startTimer = false;

41

Group 5 Imperial College London Final Report

597 randomInitialTimer = random(0, 3000); // random number between 0 and 3000 (0s to

3s);

598 startMillis = millis();

599 }

600 currentMillis = millis();

601 if(currentMillis - startMillis > randomInitialTimer){

602 currToken = nodeID + "-" + currToken; // places in front of 0, so broadcast

resets at 0, e.g. X-0-1-2-3-4-5-...

603 broadcastPing();

604 }

605 }

606 if(currToken.indexOf("0") == -1){

607 currToken = "0-" + nodeID;

608 }

609 }

610 // Pushes token forward and deletes idle node if it does not broadcast within 5s

611 else{

612 if(startTimer){

613 startTimer = false;

614 startMillis = millis();

615 }

616 currentMillis = millis();

617 if(currentMillis - startMillis > 5000){ // gives 5 seconds delay before moving token

forward

618 // Tokens of form: 1-2-3-4-5-....-N-0

619 if(currToken.startsWith("0")){

620 currToken = currToken.substring(2) + "-" + currToken.substring(0,1); // moves

token forward

621 }

622 else{

623 currToken = currToken.substring(2); // Removes the Idle Token as well

624 }

625 startTimer = true;

626 }

627 }

628

629 // --- Checks Network Nodes for Timeout ---

630 if(macTimer%20000 == 0){

631 for(int i = 1; i < currMacIndex; i++){ // don’t check index 0, since it is current

device

632 networkMacAddressTime[i] = networkMacAddressTime[i] + 20000;

633 }

634 // check if any mac address is beyond a certain time limit and removes it from

network

635 for(int i = 1; i < currMacIndex; i++){

636 if(networkMacAddressTime[i] >= 50000){ // timeout set at around 30 seconds

637 for(int j = i; j < currMacIndex - 1; j++){

638 for(int k = 1; k < 11; k++){

639 networkMacAddress[j][k] = networkMacAddress[j+1][k];

640 }

641 networkMacAddressTime[j] = networkMacAddressTime[j+1];

642 }

643 for(int k = 0; k < 11; k++){

644 networkMacAddress[currMacIndex-1][k] = "";

645 }

646 networkMacAddressTime[currMacIndex-1] = NULL;

42

Group 5 Imperial College London Final Report

647 currMacIndex--;

648 }

649 }

650 }

651

652 // --- Checks Local Clients for Timeout ---

653 if(macTimer%5000 == 0){

654 for(int i = 0; i < currClientIndex; i++){

655 clientTime[i] = clientTime[i] + 5000;

656 if(clientTime[i] >= 50000){

657 for(int j = i; j < currClientIndex - 1; j++){

658 clientTime[j] = clientTime[j + 1];

659 }

660 clientTime[currClientIndex - 1] = NULL;

661 currClientIndex--;

662 }

663 }

664 }

665

666 // --- Measures new GPS location --- //

667 // clientArray has form /client_name:(client name)/client_id:(client id)/client_ip:(

client ip)/client_loc:(client location)

668 if(macTimer%10000 == 0){

669 findLocation();

670 for(int i = 0; i < currClientIndex; i++){

671 int indexLoc = clientArray[i].indexOf("/client_loc:");

672 String tempClientInfo = clientArray[i].substring(0, indexLoc);

673 clientArray[i] = tempClientInfo + "/client_loc:" + nodeLocation;

674 }

675 }

676

677 // --- Resets Emergency Location Array ---

678 currentMillis = millis();

679 if(currentMillis - endEmergencyTimer > 10000){

680 currEmergencyIndex = 0;

681 }

682 }

683

684

685 /* ADDITIONAL IMPLEMENTED FUNCTIONS */

686 /* Interrupt Handler */

687 void SERCOM3_Handler()

688 {

689 gpsSerial.IrqHandler();

690 }

691

692 /* Broadcast Protocol */

693 // broadcast has general form ping_mac:(source mac)/client:(client info 1)/client:(client

info 2)/...

694 void broadcastPing(){

695 String broadcast = "ping_mac:" + currMacAddress;

696 for(int i = 0; i < currClientIndex; i++){

697 broadcast = broadcast + "/client:" + clientArray[i];

698 }

699 // refreshes the local network clients

700 for(int i = 1; i < currClientIndex+1; i++){

43

Group 5 Imperial College London Final Report

701 networkMacAddress[0][i] = clientArray[i-1] + "/client_mac:" + currMacAddress;

702 }

703 for(int i = currClientIndex+1; i < 11; i++){

704 networkMacAddress[0][i] = "";

705 }

706 for(int i = 0; i < currMessageSendIndex; i++){

707 broadcast = broadcast + "/" + messageSendList[i];

708 messageSendList[i] = "";

709 }

710 if(broadcastEmergency){

711 broadcast = broadcast + "/emergency_broadcast:" + nodeLocation;

712 }

713 // Tokens of form: 1-2-3-4-5-....-N-0

714 currMessageSendIndex = 0;

715 currToken = currToken.substring(2) + "-" + currToken.substring(0,1); // moves token

forward

716 broadcast = broadcast + "/token:" + currToken + "/finish_protocol";

717 Serial.println("PING broadcast: " + broadcast);

718 Serial1.println(broadcast);
719 }

720

721

722 /* Find Current GPS Location */

723 void findLocation(){

724 while(gpsSerial.available()){ // check for gps data

725 if(gps.encode(gpsSerial.read())){ // encode gps data

726 gps.f_get_position(&lat,&lon); // get latitude and longitude

727 }

728 }

729 String latitude = String(lat,6);

730 String longitude = String(lon,6);

731 nodeLocation = latitude + ";" + longitude;

732 Serial.println("nodeLocation: " + nodeLocation);

733 }

734

735 /* Prints WiFi Status */

736 void printWiFiStatus() {

737 // print the SSID of the network you’re attached to:

738 Serial.print("SSID: ");

739 Serial.println(WiFi.SSID());
740

741 // print your WiFi shield’s IP address:

742 IPAddress ip = WiFi.localIP();

743 Serial.print("IP Address: ");

744 Serial.println(ip);
745

746 // print where to go in a browser:

747 Serial.print("To see this page in action, open a browser to http://");

748 Serial.println(ip);
749 }

750

751 /* Reads Incoming Serial Messages */

752 void readSerialMessage(){

753 int timer = 0;

754 if(Serial1.available() > 0){ // continues reading serial message until /finish_protocol

is detected

44

Group 5 Imperial College London Final Report

755 while(incomingMessage.indexOf("/finish_protocol") == -1 && timer < 20000 &&

incomingMessage.indexOf("\n") == -1){

756 while(Serial1.available() > 0){

757 char c = Serial1.read();
758 incomingMessage.concat(c);

759 Serial.println(incomingMessage);
760 }

761 timer++;

762 }

763 }

764 }

9.2.2 Buffered Token Implementation

1 // --- Handles Token Push and Broadcasts ---

2 if(currToken.startsWith(nodeID)){

3 delay(100);

4 broadcastPing(); // broadcasts that device is still in network

5 }

6 else if(currToken.indexOf(nodeID) == -1){

7 if(currToken.startsWith("0")){

8 if(startTimer){

9 startTimer = false;

10 randomInitialTimer = random(0, 3000); // random number between 0 and 3000 (0s to

3s);

11 startMillis = millis();

12 }

13 currentMillis = millis();

14 if(currentMillis - startMillis > randomInitialTimer){

15 currToken = nodeID + "-" + currToken; // places in front of 0, so broadcast

resets at 0, e.g. X-0-1-2-3-4-5-...

16 broadcastPing();

17 }

18 }

19 if(currToken.indexOf("0") == -1){

20 currToken = "0-" + nodeID;

21 }

22 }

23 // Pushes token forward and deletes idle node if it does not broadcast within 5s

24 else{

25 if(startTimer){

26 startTimer = false;

27 startMillis = millis();

28 }

29 currentMillis = millis();

30 if(currentMillis - startMillis > 5000){ // gives 5 seconds delay before moving token

forward

31 // Tokens of form: 1-2-3-4-5-....-N-0

32 if(currToken.startsWith("0")){

33 currToken = currToken.substring(2) + "-" + currToken.substring(0,1); // moves

token forward

34 }

35 else{

36 currToken = currToken.substring(2); // Removes the Idle Token as well

37 }

45

Group 5 Imperial College London Final Report

38 startTimer = true;

39 }

40 }

9.2.3 GPS Emergency Implementation

1 // --- Handles Client Emergency Broadcast ---

2 if(digitalRead(emergencyPin) == LOW){

3 if(!buttonCounting){

4 buttonCounting = true;

5 startBeeperTimer = millis();

6 }

7 currentMillis = millis();

8 if(currentMillis - startBeeperTimer > 3000){ // must hold button for 3s

9 broadcastEmergency = true;

10 buttonCounting = false;

11 startEmergencyTimer = millis();

12 }

13 }

14 else{

15 buttonCounting = false;

16 }

17

18 // --- Triggers Beeper if Emergency Detected ---

19 if(currEmergencyIndex > 0){

20 currentMillis = millis();

21 if(currentMillis - checkBeeperMillis > 250){

22 checkBeeperMillis = millis();

23 if(digitalRead(beeperPin) == HIGH){

24 digitalWrite(beeperPin, LOW);

25 }

26 else{

27 digitalWrite(beeperPin, HIGH);

28 }

29 }

30 }

31 else{

32 digitalWrite(beeperPin, LOW);

33 }

34

35 /* Find Current GPS Location */

36 void findLocation(){

37 while(gpsSerial.available()){ // check for gps data

38 if(gps.encode(gpsSerial.read())){ // encode gps data

39 gps.f_get_position(&lat,&lon); // get latitude and longitude

40 }

41 }

42 String latitude = String(lat,6);

43 String longitude = String(lon,6);

44 nodeLocation = latitude + ";" + longitude;

45 Serial.println("nodeLocation: " + nodeLocation);

46 }

46

Group 5 Imperial College London Final Report

9.3 Appendix C - iOS App Source Code

9.3.1 AppDelegate.swift

1 //

2 // AppDelegate.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-02-08.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

7 //

8

9 import UIKit

10

11 @UIApplicationMain

12 class AppDelegate: UIResponder, UIApplicationDelegate {

13

14 var window: UIWindow?

15

16

17 func application(_ application: UIApplication, didFinishLaunchingWithOptions

launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool {

18

19 let storyboard = UIStoryboard(name: "Main", bundle: nil)

20 self.window = UIWindow(frame: UIScreen.main.bounds)

21

22 if UserDefaults.standard.string(forKey: "USER_ID") != nil {

23 let destinationViewController = storyboard.instantiateViewController(

withIdentifier: "NavView") as! UINavigationController

24 self.window?.rootViewController = destinationViewController

25 self.window?.makeKeyAndVisible()

26 } else {

27 let destinationViewController = storyboard.instantiateViewController(

withIdentifier: "RegView") as! FirstLaunchViewController

28 self.window?.rootViewController = destinationViewController

29 self.window?.makeKeyAndVisible()

30 }

31

32 return true

33

34 }

35

36 func applicationWillResignActive(_ application: UIApplication) {

37 // Sent when the application is about to move from active to inactive state. This

can occur for certain types of temporary interruptions (such as an incoming phone

call or SMS message) or when the user quits the application and it begins the

transition to the background state.

38 // Use this method to pause ongoing tasks, disable timers, and invalidate

graphics rendering callbacks. Games should use this method to pause the game.

39 }

40

41 func applicationDidEnterBackground(_ application: UIApplication) {

42 // Use this method to release shared resources, save user data, invalidate timers

, and store enough application state information to restore your application to its

current state in case it is terminated later.

47

Group 5 Imperial College London Final Report

43 // If your application supports background execution, this method is called

instead of applicationWillTerminate: when the user quits.

44 }

45

46 func applicationWillEnterForeground(_ application: UIApplication) {

47 // Called as part of the transition from the background to the active state; here

you can undo many of the changes made on entering the background.

48 }

49

50 func applicationDidBecomeActive(_ application: UIApplication) {

51 // Restart any tasks that were paused (or not yet started) while the application

was inactive. If the application was previously in the background, optionally refresh

the user interface.

52 }

53

54 func applicationWillTerminate(_ application: UIApplication) {

55 // Called when the application is about to terminate. Save data if appropriate.

See also applicationDidEnterBackground:.

56 }

57

58

59 }

9.3.2 ChatsViewController.swift

1 //

2 // ChatsViewController.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-02-08.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

7 //

8

9 import UIKit

10 import Alamofire

11 import SwiftyJSON

12 import MessengerKit

13

14

15 class ChatsViewController: UITableViewController {

16

17 var connected: Bool = false;

18 var address = "192.168.4.1"

19 var available_users: [ParsedUser] = []

20 var this_user: ParsedUser?

21 var selected_user_id: String?

22

23 var fwdVC: ConversationViewController?

24

25 override func viewDidLoad() {

26 super.viewDidLoad()

27

28 print("VIEWDIDLOAD")

29

30 let name = UserDefaults.standard.string(forKey: "USER_FIRSTNAME")!

48

Group 5 Imperial College London Final Report

31 let surname = UserDefaults.standard.string(forKey: "USER_LASTNAME")!

32 let id = UserDefaults.standard.string(forKey: "USER_ID")!

33 this_user = ParsedUser(name: name, ID: id, lat: 0, lon: 0)

34 title = name + " " + surname + "’s Conversations"

35

36 Timer.scheduledTimer(timeInterval: 3, target: self, selector: #selector(

refreshUsers), userInfo: nil, repeats: true)

37

38 }

39

40 // MARK: - Table view data source

41

42 override func numberOfSections(in tableView: UITableView) -> Int {

43 // #warning Incomplete implementation, return the number of sections

44 return 1

45 }

46

47 override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int)

-> Int {

48 // #warning Incomplete implementation, return the number of rows

49 return self.available_users.count

50 }

51

52

53 override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath)

-> UITableViewCell {

54 let cell = tableView.dequeueReusableCell(withIdentifier: "StandardCell", for:

indexPath)

55

56 cell.textLabel?.text = available_users[indexPath.row].name

57 cell.detailTextLabel?.text = available_users[indexPath.row].messages.last

58

59 return cell

60 }

61

62 override func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath

) {

63 self.selected_user_id = self.available_users[indexPath.row].ID

64 self.performSegue(withIdentifier: "SegueID", sender: self.available_users[

indexPath.row])

65 }

66

67 @objc func refreshUsers() {

68 print(self.available_users)

69

70 if !connected {

71 performHandshake()

72 }

73

74 let requestString = "http://\(self.address)/update_data"

75 Alamofire.request(requestString).responseJSON(completionHandler: { response in

76 if let json = try? JSON(data: response.data!) {

77 print(json)

78 self.parseUsers(json: json)

79 } else {

80 print("Error in JSON")

49

Group 5 Imperial College London Final Report

81 }

82

83 })

84 }

85

86 @objc func performHandshake() {

87

88 let name = UserDefaults.standard.string(forKey: "USER_FIRSTNAME")!

89

90 let id = UserDefaults.standard.string(forKey: "USER_ID")!

91

92 let requestString = "http://\(self.address)/client_name:" + name + "/client_id:"

+ id;

93 Alamofire.request(requestString)

94 }

95

96 func parseUsers(json: JSON) {

97 for message in json["Messages"].arrayValue {

98 let sender_id = message["Source ID"].stringValue

99 let message_text = message["Message"].stringValue

100

101 self.addMessage(message_text: message_text, user_id: sender_id)

102 }

103

104 for user in json["Data"].arrayValue {

105 let user_id = user["ID"].stringValue

106 let user_name = user["Name"].stringValue

107 let location = user["Location"].stringValue

108

109 let latlon = location.split(separator: ";", maxSplits: 1)

110 guard let lat = Float(latlon[0]) else { return }

111 guard let lon = Float(latlon[1]) else { return }

112

113 insertUser(user: ParsedUser(name: user_name, ID: user_id, lat: lat, lon: lon)

)

114 }

115 }

116

117 func insertUser(user: ParsedUser) {

118 if !isUserPresent(input_user: user) {

119 if user.ID != self.this_user!.ID {

120 self.available_users.append(user)

121 self.tableView.reloadData()

122

123 } else {

124 self.connected = true

125 }

126 }

127

128 }

129

130 func isUserPresent(input_user: ParsedUser) -> Bool {

131 for user in self.available_users {

132 if user.ID == input_user.ID {

133 return true;

134 }

50

Group 5 Imperial College London Final Report

135 }

136

137 return false;

138 }

139

140 func addMessage(message_text: String, user_id: String) {

141 print("adding " + message_text)

142 for user in self.available_users {

143 if user_id == user.ID {

144 user.messages.append(message_text)

145 self.tableView.reloadData()

146

147 if let vc = self.fwdVC, let id = self.selected_user_id {

148 if user_id == id {

149 vc.id += 1

150

151 let body: MSGMessageBody = (message_text.containsOnlyEmoji &&

message_text.count < 5) ? .emoji(message_text) : .text(message_text)

152

153 let message = MSGMessage(id: vc.id, body: body, user: vc.tim, sentAt:

Date())

154 vc.insert(message)

155 }

156 }

157 }

158 }

159 }

160

161 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

162 if let vc = segue.destination as? ConversationViewController {

163 vc.recipient = sender as? ParsedUser

164 vc.addMessagesAtBeginning()

165 self.fwdVC = vc

166 } else if let vc = segue.destination as? MapViewController {

167 vc.users = self.available_users

168 }

169 }

170

171

172 @IBAction func refresh(_ sender: Any) {

173 self.available_users = []

174 self.tableView.reloadData()

175 connected = false;

176 }

177

178 @IBAction func openMap(_ sender: Any) {

179 self.performSegue(withIdentifier: "MapSegueID", sender: nil)

180 }

181

182

183 /*
184 // Override to support conditional editing of the table view.

185 override func tableView(_ tableView: UITableView, canEditRowAt indexPath: IndexPath)

-> Bool {

186 // Return false if you do not want the specified item to be editable.

187 return true

51

Group 5 Imperial College London Final Report

188 }

189 */

190

191 /*
192 // Override to support editing the table view.

193 override func tableView(_ tableView: UITableView, commit editingStyle:

UITableViewCell.EditingStyle, forRowAt indexPath: IndexPath) {

194 if editingStyle == .delete {

195 // Delete the row from the data source

196 tableView.deleteRows(at: [indexPath], with: .fade)

197 } else if editingStyle == .insert {

198 // Create a new instance of the appropriate class, insert it into the array,

and add a new row to the table view

199 }

200 }

201 */

202

203 /*
204 // Override to support rearranging the table view.

205 override func tableView(_ tableView: UITableView, moveRowAt fromIndexPath: IndexPath,

to: IndexPath) {

206

207 }

208 */

209

210 /*
211 // Override to support conditional rearranging of the table view.

212 override func tableView(_ tableView: UITableView, canMoveRowAt indexPath: IndexPath)

-> Bool {

213 // Return false if you do not want the item to be re-orderable.

214 return true

215 }

216 */

217

218 /*
219 // MARK: - Navigation

220

221 // In a storyboard-based application, you will often want to do a little preparation

before navigation

222 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

223 // Get the new view controller using segue.destination.

224 // Pass the selected object to the new view controller.

225 }

226 */

227

228 }

9.3.3 ConversationViewController.swift

1 //

2 // ConversationViewController.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-02-08.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

52

Group 5 Imperial College London Final Report

7 //

8

9 import UIKit

10 import MessengerKit

11 import Alamofire

12

13 class ConversationViewController: MSGMessengerViewController {

14

15 let steve = User(displayName: "Steve", avatar: nil, avatarUrl: nil, isSender: true)

16

17 let tim = User(displayName: "Tim", avatar: nil, avatarUrl: nil, isSender: false)

18

19 var id = 100

20

21 var address = "192.168.4.1"

22 var this_user: ParsedUser?

23 var recipient: ParsedUser?

24

25 override var style: MSGMessengerStyle {

26 var style = MessengerKit.Styles.iMessage

27 style.headerHeight = 0

28 return style

29 }

30

31

32 var messages: [[MSGMessage]] = []

33

34 override func viewDidLoad() {

35 super.viewDidLoad()

36 title = "iMessage"

37

38 let name = UserDefaults.standard.string(forKey: "USER_FIRSTNAME")!

39 let surname = UserDefaults.standard.string(forKey: "USER_LASTNAME")!

40 let id = UserDefaults.standard.string(forKey: "USER_ID")!

41 this_user = ParsedUser(name: name, ID: id, lat: 0, lon: 0)

42

43 dataSource = self

44 delegate = self

45 }

46

47 func addMessagesAtBeginning() {

48 for message in self.recipient!.messages {

49 id += 1

50 print("Current Message: " + message)

51 let body: MSGMessageBody = (message.containsOnlyEmoji && message.count < 5) ?

.emoji(message) : .text(message)

52 let message_b = MSGMessage(id: id, body: body, user: tim, sentAt: Date())

53

54 self.messages.append([message_b])

55 }

56 }

57

58 override func viewDidAppear(_ animated: Bool) {

59 super.viewDidAppear(animated)

60

61 collectionView.scrollToBottom(animated: false)

53

Group 5 Imperial College London Final Report

62 }

63

64 override func inputViewPrimaryActionTriggered(inputView: MSGInputView) {

65 id += 1

66

67 let body: MSGMessageBody = (inputView.message.containsOnlyEmoji && inputView.

message.count < 5) ? .emoji(inputView.message) : .text(inputView.message)

68

69 let message = MSGMessage(id: id, body: body, user: steve, sentAt: Date())

70 sendMessage(message: message)

71 insert(message)

72 }

73

74 override func insert(_ message: MSGMessage) {

75

76 collectionView.performBatchUpdates({

77 if let lastSection = self.messages.last, let lastMessage = lastSection.last,

lastMessage.user.displayName == message.user.displayName {

78 self.messages[self.messages.count - 1].append(message)

79

80 let sectionIndex = self.messages.count - 1

81 let itemIndex = self.messages[sectionIndex].count - 1

82 self.collectionView.insertItems(at: [IndexPath(item: itemIndex, section:

sectionIndex)])

83

84 } else {

85 self.messages.append([message])

86 let sectionIndex = self.messages.count - 1

87 self.collectionView.insertSections([sectionIndex])

88 }

89 }, completion: { (_) in

90 self.collectionView.scrollToBottom(animated: true)

91 self.collectionView.layoutTypingLabelIfNeeded()

92 })

93

94 }

95

96 func sendMessage(message: MSGMessage) {

97 if let text = message.body.rawValue as? String {

98 var requestString = "http://\(self.address)/message:" + processMessage(

inString: text) + "/source_id:" + self.this_user!.ID + "/target_id:"

99 requestString = requestString + self.recipient!.ID

100

101 print("Request: " + requestString)

102

103 Alamofire.request(requestString)

104 }

105 }

106

107 func processMessage(inString: String) -> String {

108 var newString = inString.replacingOccurrences(of: " ", with: "%20")

109 newString = newString.replacingOccurrences(of: "\n", with: "%20")

110 return newString

111 }

112

113 override func insert(_ messages: [MSGMessage], callback: (() -> Void)? = nil) {

54

Group 5 Imperial College London Final Report

114

115 collectionView.performBatchUpdates({

116 for message in messages {

117 if let lastSection = self.messages.last, let lastMessage = lastSection.

last, lastMessage.user.displayName == message.user.displayName {

118 self.messages[self.messages.count - 1].append(message)

119

120 let sectionIndex = self.messages.count - 1

121 let itemIndex = self.messages[sectionIndex].count - 1

122 self.collectionView.insertItems(at: [IndexPath(item: itemIndex,

section: sectionIndex)])

123

124 } else {

125 self.messages.append([message])

126 let sectionIndex = self.messages.count - 1

127 self.collectionView.insertSections([sectionIndex])

128 }

129 }

130 }, completion: { (_) in

131 self.collectionView.scrollToBottom(animated: false)

132 self.collectionView.layoutTypingLabelIfNeeded()

133 DispatchQueue.main.asyncAfter(deadline: .now() + 0.3) {

134 callback?()

135 }

136 })

137

138 }

139

140 }

141

142 // MARK: - Overrides

143

144 extension ConversationViewController {

145

146 }

147

148 // MARK: - MSGDataSource

149

150 extension ConversationViewController: MSGDataSource {

151

152 func numberOfSections() -> Int {

153 return messages.count

154 }

155

156 func numberOfMessages(in section: Int) -> Int {

157 return messages[section].count

158 }

159

160 func message(for indexPath: IndexPath) -> MSGMessage {

161 return messages[indexPath.section][indexPath.item]

162 }

163

164 func footerTitle(for section: Int) -> String? {

165 return "Just now"

166 }

167

55

Group 5 Imperial College London Final Report

168 func headerTitle(for section: Int) -> String? {

169 return messages[section].first?.user.displayName

170 }

171

172 }

173

174 // MARK: - MSGDelegate

175

176 extension ConversationViewController: MSGDelegate {

177

178 func linkTapped(url: URL) {

179 print("Link tapped:", url)

180 }

181

182 func avatarTapped(for user: MSGUser) {

183 print("Avatar tapped:", user)

184 }

185

186 func tapReceived(for message: MSGMessage) {

187 print("Tapped: ", message)

188 }

189

190 func longPressReceieved(for message: MSGMessage) {

191 print("Long press:", message)

192 }

193

194 func shouldDisplaySafari(for url: URL) -> Bool {

195 return true

196 }

197

198 func shouldOpen(url: URL) -> Bool {

199 return true

200 }

201

202 }

9.3.4 FirstLaunchViewController.swift

1 //

2 // ViewController.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-02-08.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

7 //

8

9 import UIKit

10

11 class FirstLaunchViewController: UIViewController, UITextFieldDelegate {

12

13 @IBOutlet weak var firstName: LoginTextField!

14 @IBOutlet weak var lastName: LoginTextField!

15

16 override func viewDidLoad() {

17 super.viewDidLoad()

56

Group 5 Imperial College London Final Report

18

19 self.firstName.delegate = self

20 self.lastName.delegate = self

21 // Do any additional setup after loading the view.

22 }

23

24 override var prefersStatusBarHidden: Bool {

25 return true

26 }

27

28 @IBAction func UserTapped(_ sender: Any) {

29 self.processData()

30 }

31

32 func processData() {

33 if !isValidName(firstName.text!) || !isValidName(lastName.text!) {

34 let alert = UIAlertController(title: "Check your Name", message: "The names

you have just entered are not valid, re-enter them and retry", preferredStyle:

UIAlertController.Style.alert)

35 alert.addAction(UIAlertAction(title: "Mhh... Sure!", style: UIAlertAction.

Style.default, handler: nil))

36 self.present(alert, animated: true, completion: nil)

37 } else {

38 let newId = getNewID();

39 UserDefaults.standard.set(newId, forKey: "USER_ID")

40 UserDefaults.standard.set(firstName.text!, forKey: "USER_FIRSTNAME")

41 UserDefaults.standard.set(lastName.text!, forKey: "USER_LASTNAME")

42

43 let alert = UIAlertController(title: "Success!", message: "You are all set.

Connect to the WAM network!", preferredStyle: UIAlertController.Style.alert)

44 alert.addAction(UIAlertAction(title: "Ok", style: UIAlertAction.Style.default

, handler: { UIAlertAction in

45

46 let storyboard = UIStoryboard(name: "Main", bundle: nil)

47 let messagesViewController = storyboard.instantiateViewController(

withIdentifier: "NavView") as! UINavigationController

48 messagesViewController.modalPresentationStyle = .fullScreen

49 self.present(messagesViewController, animated: true, completion: nil)

50

51 }))

52

53 self.present(alert, animated: true, completion: nil)

54 }

55 }

56

57 func isValidName(_ name: String) -> Bool {

58 let nameRegEx = "(?<!)[-a-zA-Z’]{2,26}"

59

60 let namePred = NSPredicate(format:"SELF MATCHES %@", nameRegEx)

61 return namePred.evaluate(with: name)

62 }

63

64 func getNewID() -> String {

65 let date = Date()

66 let calender = Calendar.current

57

Group 5 Imperial College London Final Report

67 let components = calender.dateComponents([.year,.month,.day,.hour,.minute,.second

], from: date)

68

69 let year = components.year

70 let month = components.month

71 let day = components.day

72 let hour = components.hour

73 let minute = components.minute

74 let second = components.second

75

76 let randomNumber = Int.random(in: 0 ..< 10000)

77

78 let today_string = String(year!) + String(month!) + String(day!) + String(hour!)

+ String(minute!) + String(second!) + String(randomNumber)

79

80 return today_string

81 }

82

83 func textFieldShouldReturn(_ textField: UITextField) -> Bool {

84

85 //textField code

86

87 textField.resignFirstResponder() //if desired

88 self.processData()

89 return true

90 }

91

92

93 }

9.3.5 MapViewController.swift

1 //

2 // MapViewController.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-03-11.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

7 //

8

9 import UIKit

10 import MapKit

11

12 class MapViewController: UIViewController, MKMapViewDelegate {

13

14 @IBOutlet weak var map: MKMapView!

15 let locationManager = CLLocationManager()

16 var users: [ParsedUser]!

17

18 override func viewDidLoad() {

19 super.viewDidLoad()

20

21 map.delegate = self

22 checkLocationServices()

23 showLocations()

58

Group 5 Imperial College London Final Report

24 }

25

26 func checkLocationServices() {

27 if CLLocationManager.locationServicesEnabled() {

28 checkLocationAuthorization()

29 } else {

30 // Show alert letting the user know they have to turn this on.

31 }

32 }

33

34 func checkLocationAuthorization() {

35 switch CLLocationManager.authorizationStatus() {

36 case .authorizedWhenInUse:

37 map.showsUserLocation = true

38 case .denied: // Show alert telling users how to turn on permissions

39 break

40 case .notDetermined:

41 locationManager.requestWhenInUseAuthorization()

42 map.showsUserLocation = true

43 case .restricted:

44 break

45 case .authorizedAlways:

46 break

47 }

48 }

49

50 func showLocations() {

51 for user in self.users {

52 let annotation = MKPointAnnotation()

53 annotation.title = user.name

54 annotation.coordinate = user.location

55 print("\(user.name) ANNOTATION ADDED")

56 self.map.addAnnotation(annotation)

57 }

58 }

59

60 }

9.3.6 LoginTextField.swift

1 //

2 // LoginTextField.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-02-08.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

7 //

8

9 import Foundation

10 import UIKit

11

12 @IBDesignable

13 class LoginTextField: UITextField {

14

15 override func layoutSubviews() {

59

Group 5 Imperial College London Final Report

16 super.layoutSubviews()

17

18 self.layer.borderColor = UIColor(white: 231/255, alpha: 1).cgColor

19 self.layer.borderWidth = 1

20 }

21

22 override func textRect(forBounds bounds: CGRect) -> CGRect {

23 return bounds.insetBy(dx: 8, dy: 3)

24 }

25

26 override func editingRect(forBounds bounds: CGRect) -> CGRect {

27 return textRect(forBounds: bounds)

28 }

29

30 }

9.3.7 ParsedUser.swift

1 //

2 // ParsedUser.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-02-08.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

7 //

8

9 import Foundation

10 import MapKit

11

12 class ParsedUser {

13 var name: String

14 var ID: String

15 var location: CLLocationCoordinate2D

16 var messages: [String] = []

17

18 init(name: String, ID: String, lat: Float, lon: Float) {

19 self.name = name

20 self.ID = ID

21 self.location = CLLocationCoordinate2D(latitude: CLLocationDegrees(lat),

longitude: CLLocationDegrees(lon))

22 }

23 }

9.3.8 User.swift

1 //

2 // User.swift

3 // What a Mesh!

4 //

5 // Created by Gabriele Giuli on 2020-02-08.

6 // Copyright 2020 GabrieleGiuli. All rights reserved.

7 //

8

60

Group 5 Imperial College London Final Report

9

10 import MessengerKit

11

12 struct User: MSGUser {

13

14 var displayName: String

15

16 var avatar: UIImage?

17

18 var avatarUrl: URL?

19

20 var isSender: Bool

21

22 }

9.4 Appendix C - Product Design Specification

Performance The solution should be capable of providing a reliable off-grid communication net-
work. The device should be capable of delivering the following main features:

• Establish a long range and secure communication (e.g. encrypted) channel between users willing
to communicate to each other

• Feature a versatile and user-friendly interface that allows the user to easily access the commu-
nication link

The system must be capable of exchanging all types of digital data (i.e. text messages, emails,
pictures. . .) over a long range while also being capable of both real-time data exchange and temporary
data storage to account for offline users. Our device should be capable of running autonomously for
long periods of time without access to ordinary powers sources such as grid power and must not rely
on any external infrastructure to deliver the messages - it has to be completely autonomous.

Environment In order for our product to meet its specification it should be robust against harsh
environments. To ensure this, we are looking into the following areas:

• Should be water-resistant (circuitry should be protected from water) and protected against small
insects and debris, as the device may be subject to any remote environment where unexpected
rain, dust, or presence of insects is to be accounted for

• Should be able to withstand extreme temperatures, humidity, and dirty conditions, so that the
device may be used under any emergency

• Should not cause a negative impact to the environment (i.e. not pollute, not be too loud, not
disrupt ecosystems)

• Should be shockproof as the device is mainly intended to be used for outdoor activities

• The presence and/or absence of signal obstacles (e.g. trees, mountains) should not hinder per-
formance to an unusable extent (slight decrease in performance may be allowed)

61

Group 5 Imperial College London Final Report

Life in Service (Performance) Ideally, the product should function for long periods of time so
that minimum maintenance is required. It is important that we maximize the product’s life in service
as the customers are likely to use this product in circumstances where communication is essential for
survival (i.e. to communicate with a search and rescue team). Therefore, the final product’s battery
should last at least a few days (after which, the device would need to be recharged). In the context of
emergency communication, life in service should be one of our priorities.

Maintenance We will be working at a systems level for our project. This means we will not be
putting together each individual component and rather putting together systems that already have a
purpose to make our overall project. This allows the user to easily buy spare parts from third party
brands, hence increasing repairability. The main issue for maintenance will be battery life. The device
will have an accessible rechargeable battery so that the user can recharge it when required and easily
change battery when worn out: the customer does not have to buy a new product every time the
battery wears out.

In conclusion, the only expected regular maintenance is charging the battery and substituting it
when worn out. In addition to that, a modular design will allow for easy fixes even in remote areas
where official resellers might not be available.

Target Product Cost As we require multiple pieces of hardware for our product to work, we will
split the budget to be able to make them. This means we would have about £150 to make each
product so we should aim to market them between £200 - £300. This is so our product would be
much cheaper than the competitors, thus achieving our main goal while also being able to make profit
on our product.

Competition Competition is limited since there is only one other company which already provides
a similar device: goTenna (https://gotenna.com/). They sell similar devices, but they are
not trying to implement in Wi-Fi or similar features for the whole network. Also, their main aim
is for general usage of these mesh networks and not targeted to emergency situations or bringing
communication access to rural areas. Other similar Open-Source projects are present but they do not
represent a significant competitor.

Shipping The main practical methods of international delivery of the product are sea and air
freights. However, due to the comparably lengthy delivery time of sea freights, as well as the marginally
lower costs of air transportation (due to the small dimension and weight of our product), it is con-
cluded that international shipping of single products will principally be done through air. This is
because air freights are charged predominantly by the weight of the product; and since our product
should optimally weigh less than 1kg, the overall delivery cost of air transportation is typically less
than its seaborne counterpart. However, this option should still remain flexible, as for bulk delivery
- where large amounts of the product can be sent at one time - sea freight can prove to be markedly
cheaper than air transport. Domestic shipping within the UK, on the other hand, can mainly be done
through LTL (Less Than Truckload shipping) or other available domestic courier services such as DHL
and Parcelforce.

Packing At this stage, packing is not a priority for this project. However, depending on how fragile
the final product is we may have to consider this parameter. Ideally, our final product should be
robust enough (see Environment section) so that we do not require any elaborate packaging.

Quantity The approach we are planning to take for this project is to produce nodes capable of
transmitting information from one end to the other, thus forming a network. With this approach

62

https://gotenna.com/

Group 5 Imperial College London Final Report

in mind, the final product should be capable of handling an arbitrary number of nodes and so the
quantity will depend on the distances we need to cover. For demonstration purposes, two nodes will
suffice (One stationary and the other one portable).

Manufacturing Facilities Initially a buy-out strategy will be followed, allowing the team to work
on a system level: little or no specialized tools and facilities will be required. Furthermore, series
production will not be required for the initial stage of the project (i.e. demonstration), hence the
following standard and readily available facilities can be used to manufacture the product:

• Imperial College Robotics Lab: Based in the EEE building which has 3D printers and laser
cutters and technical help to use these devices.

• First and Second year labs: Also based in EEE building, provides tools for prototyping/build-
ing simple circuits. Lab technicians can also be a useful resource.

For later stages of the product, specialized equipment and manufacturing facilities will be necessary
for mass production and for a reduction in manufacturing costs. At this stage a make-in strategy
might be chosen to ensure a higher degree of flexibility in design and overall lower production costs.

Size There are different situations in which our product could be used. The size of our product is
mainly important for people who go hiking, climbing or cycling into remote areas without network
connection. They normally carry a lot of items in terms of food, clothes, safety and health equipment,
but they have a limited storage space in their backpacks. This is why we need to keep the size of the
product to a minimum: we forecast that our product’s size will be around 10 × 10 × 10 cm, but we
will try to make it as small as possible.

Weight Though there is no weight limit, the device should be made to be as light as possible so
as to not cause an inconvenience to the user carrying it around in whatever environment they may
be subject to. Ideally, the device structure should be made of less and lighter material, allowing for
more of the budget to be invested in better quality components. However, the weight clearly depends
on Size, and given current signal transducing and networking technology the absolute maximum mass
should be around 1 Kg to ensure portability.

Aesthetic, Appearance and Finish The aesthetic and design of the product should be modern
(perhaps even colorful), minimalistic, and simple to both appeal to the market’s taste and to ensure
the ease of use. For the outer finishing of the product, rubber or materials with similar properties in
terms of shock-absorbance, water-resistance, and durability, is ideal, especially since the environment
in which the product is used can be moderately hazardous (e.g. when used for hiking), hence giving it
an industrial look. However, because the primary objective of the product remains to provide means
of communication in rural areas or isolated communities, no important device functionality should be
compromised for better design or appearance.

Materials We require the final product to be waterproof and robust because of the harsh environ-
ments it is intended to be used in. Because of our facilities (3D printers and laser cutters) we will
have access to lots of waterproof plastics such as acrylic and PLA which are strong and waterproof
– these would be used to provide a casing for the circuitry. We would also need material to provide
shock absorption and to make the product stable on uneven ground. We suggest lining the edges and
bottom of the case with rubber which would provide a solution to both problems as rubber has a high
coefficient of friction and it is shock absorbent.

63

Group 5 Imperial College London Final Report

Product Life-Span In terms of overall life-span of our product, we will try to make it as durable
as possible, especially for villages in remote areas where the device will be used daily during a long
period of time. We want to find the balance between cost, life-span and performance, so we will keep
in mind that it is not sustainable to double the life-span of the product if we have to triple its cost to
achieve it.

There is a very critical point to tackle in this subsection, which is the battery life of our product.
We need a good battery life for long excursions, because people may not be able to access a power
source for more than a week. This problem scales quickly because the performance of a product does
not only depend on that product itself but also on the other devices it has to connect to in order to
send messages (we build our own infrastructure). There are various solutions possible to this problem:

• We could run our product on normal batteries (9V or Alkaline batteries), so our users could
bring spare batteries with them in case.

• A battery saving mode, where if the user is not trying to send any message, it does not perform
some of its tasks and simply plays the role of infrastructure for other devices.

No planned obsolescence is taken into account since we aim to build the device as reliably as possible:
the system will be used in life-threatening situations and reliability is essential.

Standards and Specifications The device will potentially exploit radio-frequency technology to
establish a communication link, hence it has to comply with EMC (ElectroMagnetic Compatibility)
regulating standards such as the FCC and/or CE depending on the target market. In particular the
device needs to operate in the ISM (Industrial Scientific Medical) frequency band to be used without a
specific licence. Furthermore, the device’s output power must be below the legal threshold. However,
working at a system level (i.e. already available RF modules) will significantly reduce the effort needed
to certify the final product. In addition, an initial prototype for demonstration purposes only will not
require strict certifications, as long as the local frequency and output power requirements are met.

Ergonomics The device should be of reasonable size and weight such that it fits into a usual sized
rucksack and can be carried around comfortably. The device’s case needs to be smooth without any
sharp edges or corners that could cause injuries.

Customer We intend to make this product for people going to potentially harsh and remote areas
(e.g. rangers, search teams, climbers, trekkers) and for authorities who need communication chan-
nels during natural disasters. The target customer’s age might vary significantly, however it can be
concluded that the user’s age should be 25+ years old. Physical characteristic (e.g. height, weight,
physical structure, etc) should not affect the usability of the product; however, the user will need to
be capable of carrying the device with them.

Quality and Reliability Although we need a very good performance and reliability, quality is not
one of our main preoccupations: we don’t need the best materials or the best technology as long as
our product works reliably. Cost-efficiency is the real priority in this aspect to be competitive in the
market. We aim for a 95% of success in our tests, which would prove good reliability.

In the end, MTBF (Mean Time Before Failure) and MTBR (Mean Time Before Repair) should
both be maximized keeping in mind the economical constraints.

Shelf Life (Storage) Ideally, we would like to maximize shelf life by making our product robust
and durable. As an estimate, we expect the final product to have a shelf life of at least a few years.
By maximizing shelf life, we would be providing a cost-effective solution in the long run which is one
of our priorities for this project.

64

Group 5 Imperial College London Final Report

Processes The outer shell will be 3D printed in PLA plastic with other small mounting components
might be laser-cut in acrylic. Our main PCB will be manufactured either using internal resources or
ordering it from third party PCB builders such as JLCPCB. Different modules will be interconnected
using either soldering or fast-connectors, the latter is preferred since it enhances modularity and
repairability.

Time-Scale The demo of the project will be on 17th March 2020. That means, from now on we
have four months to complete the project. The following is an approximate timeline for the project:

1. Detailed definition of solutions [week 6 - week 7]

2. Detailed technical mapping and role allocation between group members [week 7 - 8]

3. Prototype hardware development (includes testing) [week 8 - 11]

4. Prototype software development (includes testing) [week 8 - 11]

5. Assembly of components [week 11 - 13]

6. Prototype testing [week 13 - 14]

7. Fine modifications [week 14 - 17]

8. Testing final product [week 17 - 18]

Testing The testing of the product will be divided into two phases. The first phase concerns the
testing of the hardware that must be safe to handle must not overheat and currents and voltages need
to be in the specified boundaries to guarantee a safe and reliable operation. The initial testing can be
conducted on each subsystem before integrating it with the other modules. This will make the whole
system less prone to issues. The testing tools required are oscilloscopes and multimeters. The device
will be run for an extended period of time and important parameters will be checked. Any arising
issue will be addressed.

After the hardware testing is finished, the device’s software capabilities will be checked. This can
be done quicker than hardware testing: the user interface can be tested instantly at each development
stage. The total system behaviour is going to be more difficult to test, but it can be done by checking
each functionality one by one hence debugging can be done quickly. Software testbenches can be also
utilized for checking reliability and finding bugs.

Safety There are not a lot of safety issues regarding the use or the manufacturing of our product.
The main safety concern would is represented by the potential overheating of the device that could
cause some components to get damaged, burn and start a fire. But with the voltages we are dealing
with there is no realistic risk of fire or any threat to human health. The only thing that could be
damaged by overheating is the product itself. The radio frequencies and output powers we are planning
on using are not considered harmful to the human body.

Company Constraints We are working with a budget of £450 for every expense in our project.
Our main goal was to make this technology attainable by more people to increase communication
capabilities. To do this we must limit our price point to much less than the competitors. We need to
make multiple modules for our final product so that we can demonstrate the communication process,
meaning we must account for making multiple products in our budget. We are also limited by our
manufacturing facilities being mainly 3D printers and laser cutters in the robotics laboratory which
limits the materials we can use.

65

Group 5 Imperial College London Final Report

Market Constraints As this device targets a niche audience, demand for this product overall may
not be very high, therefore implying that the cost of production should be minimised as much as
possible.Within the target audience, there may be a few customers who will not see the benefit of
using out product rather than an alternative. To counteract this we would have multiple features
(unique to our product) in our device, so that even if a new product optimises a certain function of
our device, our product has the advantage of having other convenient features

Patents, Literature and Product Data There are no known patents that would limit the de-
velopment of the product. The main mesh networks already have a few standards which are IEEE
standards like IEEE 802.11s (https://ieeexplore.ieee.org/document/5416357). Hence
there are no patent issues with the communication protocol. Looking at the unlicensed communica-
tion channels allowed in the UK: (863-870 MHz) or 2.4 GHz frequencies are off license hence these
frequency bands can be used without acquiring a licence. Overall there are no patent or legislation
issues that would interfere with the development of the product. http://static.ofcom.org.
uk/static/spectrum/fat.html

Political and Social Implications The political and social implications of the product should be
overwhelmingly positive. It will provide cellphone owners, who require cellular towers for wireless
communication (or mobile coverage), a much cheaper alternative to satellite phones when travelling in
regions where no such communication towers are nearby. This will also reduce the need and burden to
governments to build cell towers in many rural parts of the country, which on average costs $ 150,000
per tower, an investment that could instead be directed elsewhere. Lastly, the product can connect
isolated communities / villages to the rest of the country, and has the potential to greatly reduce the
number of worldwide casualties due to being stranded with no means of communication (due to lack
of mobile coverage). These factors contribute to the political and socioeconomical favourability of the
product to countries around the world which utilizes it.

Legal The only legal problem that our product would have is how we deal and store data (locations,
messages. . .). Our device is used as a part of the infrastructure, which means that all the messages
and data go through different devices before reaching a network connection. This data should not
be available to users of the devices who are neither the emitter nor the receiver of the message. We
can either encrypt the message or build a firewall for the messages traveling across different devices.
In the end GDPR like documentation will need to be consulted to ensure that we protect the users’
privacy.

Installation The device is going to be transportable, user-friendly: no specialized training is re-
quired. In terms of software the device will come with previously installed firmware and the user is
not required to install any additional piece of software in order to use the device. This shows that
installation would not need technical expertise, hence the device will be easy to use by the costumer
and even software updates would not be an issue.

Documentation Although the overall use of the device should be simple and self-explanatory, a
detailed documentation and/or manual is required to both explain in high-level how the device works
and the principles behind it, as well as to describe all the functionalities present. This may include
methods of navigating to the desired frequency channel, instructions on how to set up the device and
connect it with your own personal device (e.g. phone or laptop), and explanations on all the features
of the App/software and how to use it to send bitstreams of information through the channel to target
nodes.

66

https://ieeexplore.ieee.org/document/5416357
http://static.ofcom.org.uk/static/spectrum/fat.html
http://static.ofcom.org.uk/static/spectrum/fat.html

Group 5 Imperial College London Final Report

Disposal The modular design of the device makes it possible to recycle and/or reuse most of the
components. Furthermore, RoHS compliant components will be used to further increase environ-
ment compatibility. The outer PLA shell can be fully recycled, as well as the rubber used for shock
protection.

9.5 Appendix D - Gantt Chart

67

Group 5 Imperial College London Final Report

References

[1] Amazon. NUZAMAS 3.5W 6V 600ma Mini Solar Panel. https://www.amazon.co.
uk/NUZAMAS-Outdoor-Camping-Battery-Charger/dp/B073CDW1VZ/ref=asc_
df_B073CDW1VZ/?tag=googshopuk-21&linkCode=df0&hvadid=309964075885&
hvpos=1o3&hvnetw=g&hvrand=15021748749304376447&hvpone=&hvptwo=
&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9072501&hvtargid=pla-
469553834775&psc=1.

[2] Banggood. TP4056 5V 1A Lipo Battery Mini USB Charging Board. https:
//uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-
Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=
GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_
content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&
gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-
JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN .

[3] Ericsson. Population Coverage. https://ericsson.com/en/mobility-report/
population-coverage.

[4] Ground Control. MCD-4800 - A Portable, Glocal, Satellite Internet Hotspot - Land & Sea.
http://www.groundcontrol.com/MCD-4800_BGAN_Terminal.htm.

[5] Inmarsat. Inmarsat Services. https://www.inmarsat.com/services/.

[6] Iridium. Iridium Satellite Phones. https://www.iridium.com/phones/.

[7] Jayme Moye, NATIONAL GEOGRAPHIC. Day hikers are the most vulnerable in survival
situations. Here’s why. https://www.nationalgeographic.com/adventure/2019/04/
hikers-survival-tips/.

[8] Mouser. BOB-08276 Breakout Board. https://www.mouser.co.uk/ProductDetail/
SparkFun/BOB-08276?qs=%2Fha2pyFaduiJQpwKf1JYNlCbhN0cQH8tpul8KPP47%
252BhhZ8%2F67M8aag%3D%3D.

[9] Mouser. DIGI XKB2-Z7T-WZM. https://www.mouser.co.uk/ProductDetail/
DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A==&vip=1&gclid=
CjwKCAiAmNbwBRBOEiwAqcwwpfKTugAMlw49jV8jWPFVypoS_7301JQtVKD_5uxUvhef-
Xa0mO6avBoCmq0QAvD_BwE.

[10] Open Garden. Firechart App Presentation. https://www.opengarden.com/firechat/.

[11] Project OWL. Project OWL Presentation. https://project-owl.com.

[12] Rock Seven. About RockBLOCK Mk2. https://www.rock7.com/products-rockblock.

[13] RS Components. 3.7 V - 1.8 Ah LiPo Batteries. https://uk.rs-online.com/web/p/
speciality-size-rechargeable-batteries/1449405/.

[14] RS Components. Arduino MKR WiFi 1010. https://uk.rs-online.com/web/p/
processor-microcontroller-development-kits/1763647/?relevancy-data=
636F3D3126696E3D4931384E53656172636847656E65726963266C753D656E266D6D3D6D61746368616C6C7061727469616C26706D3D5E2E2A2426706F3D31333326736E3D592673723D2673743D43415443485F414C4C5F44454641554C542673633D592677633D4E4F4E45267573743D61726475696E6F206D6B722031303130267374613D61726475696E6F206D6B72203130313026&
searchHistory=%7B%22enabled%22%3Atrue%7D.

68

https://www.amazon.co.uk/NUZAMAS-Outdoor-Camping-Battery-Charger/dp/B073CDW1VZ/ref=asc_df_B073CDW1VZ/?tag=googshopuk-21&linkCode=df0&hvadid=309964075885&hvpos=1o3&hvnetw=g&hvrand=15021748749304376447&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9072501&hvtargid=pla-469553834775&psc=1
https://www.amazon.co.uk/NUZAMAS-Outdoor-Camping-Battery-Charger/dp/B073CDW1VZ/ref=asc_df_B073CDW1VZ/?tag=googshopuk-21&linkCode=df0&hvadid=309964075885&hvpos=1o3&hvnetw=g&hvrand=15021748749304376447&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9072501&hvtargid=pla-469553834775&psc=1
https://www.amazon.co.uk/NUZAMAS-Outdoor-Camping-Battery-Charger/dp/B073CDW1VZ/ref=asc_df_B073CDW1VZ/?tag=googshopuk-21&linkCode=df0&hvadid=309964075885&hvpos=1o3&hvnetw=g&hvrand=15021748749304376447&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9072501&hvtargid=pla-469553834775&psc=1
https://www.amazon.co.uk/NUZAMAS-Outdoor-Camping-Battery-Charger/dp/B073CDW1VZ/ref=asc_df_B073CDW1VZ/?tag=googshopuk-21&linkCode=df0&hvadid=309964075885&hvpos=1o3&hvnetw=g&hvrand=15021748749304376447&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9072501&hvtargid=pla-469553834775&psc=1
https://www.amazon.co.uk/NUZAMAS-Outdoor-Camping-Battery-Charger/dp/B073CDW1VZ/ref=asc_df_B073CDW1VZ/?tag=googshopuk-21&linkCode=df0&hvadid=309964075885&hvpos=1o3&hvnetw=g&hvrand=15021748749304376447&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9072501&hvtargid=pla-469553834775&psc=1
https://www.amazon.co.uk/NUZAMAS-Outdoor-Camping-Battery-Charger/dp/B073CDW1VZ/ref=asc_df_B073CDW1VZ/?tag=googshopuk-21&linkCode=df0&hvadid=309964075885&hvpos=1o3&hvnetw=g&hvrand=15021748749304376447&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9072501&hvtargid=pla-469553834775&psc=1
https://uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN
https://uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN
https://uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN
https://uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN
https://uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN
https://uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN
https://uk.banggood.com/TP4056-1A-Lipo-Battery-Charging-Board-Charger-Module-Mini-USB-Interface-p-1027027.html?gmcCountry=GB¤cy=GBP&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=zouzou&utm_campaign=pla-gbg-all-pc-1010&ad_id=388626607191&gclid=CjwKCAiAob3vBRAUEiwAIbs5TmPW0WbOF_RQhewG3R3n_QUEbf6r82hlU-JvXGDKBuEyKKJZCVG4ohoCQ50QAvD_BwE&cur_warehouse=CN
https://ericsson.com/en/mobility-report/population-coverage
https://ericsson.com/en/mobility-report/population-coverage
http://www.groundcontrol.com/MCD-4800_BGAN_Terminal.htm
https://www.inmarsat.com/services/
https://www.iridium.com/phones/
https://www.nationalgeographic.com/adventure/2019/04/hikers-survival-tips/
https://www.nationalgeographic.com/adventure/2019/04/hikers-survival-tips/
https://www.mouser.co.uk/ProductDetail/ SparkFun/BOB-08276? qs=%2Fha2pyFaduiJQpwKf1JYNlCbhN0cQH8tpul8KPP47%252BhhZ8%2F67M8aa g%3D%3D
https://www.mouser.co.uk/ProductDetail/ SparkFun/BOB-08276? qs=%2Fha2pyFaduiJQpwKf1JYNlCbhN0cQH8tpul8KPP47%252BhhZ8%2F67M8aa g%3D%3D
https://www.mouser.co.uk/ProductDetail/ SparkFun/BOB-08276? qs=%2Fha2pyFaduiJQpwKf1JYNlCbhN0cQH8tpul8KPP47%252BhhZ8%2F67M8aa g%3D%3D
https://www.mouser.co.uk/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A==&vip=1&gclid=CjwKCAiAmNbwBRBOEiwAqcwwpfKTugAMlw49jV8jWPFVypoS_7301JQtVKD_5uxUvhef-Xa0mO6avBoCmq0QAvD_BwE
https://www.mouser.co.uk/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A==&vip=1&gclid=CjwKCAiAmNbwBRBOEiwAqcwwpfKTugAMlw49jV8jWPFVypoS_7301JQtVKD_5uxUvhef-Xa0mO6avBoCmq0QAvD_BwE
https://www.mouser.co.uk/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A==&vip=1&gclid=CjwKCAiAmNbwBRBOEiwAqcwwpfKTugAMlw49jV8jWPFVypoS_7301JQtVKD_5uxUvhef-Xa0mO6avBoCmq0QAvD_BwE
https://www.mouser.co.uk/ProductDetail/DIGI/XKB2-Z7T-WZM?qs=0lHBc9ha0jd03LtSa9HD5A==&vip=1&gclid=CjwKCAiAmNbwBRBOEiwAqcwwpfKTugAMlw49jV8jWPFVypoS_7301JQtVKD_5uxUvhef-Xa0mO6avBoCmq0QAvD_BwE
https://www.opengarden.com/firechat/
https://project-owl.com
https://www.rock7.com/products-rockblock
https://uk.rs-online.com/web/p/speciality-size-rechargeable-batteries/1449405/
https://uk.rs-online.com/web/p/speciality-size-rechargeable-batteries/1449405/
https://uk.rs-online.com/web/p/processor-microcontroller-development-kits/1763647/?relevancy-data=636F3D3126696E3D4931384E53656172636847656E65726963266C753D656E266D6D3D6D61746368616C6C7061727469616C26706D3D5E2E2A2426706F3D31333326736E3D592673723D2673743D43415443485F414C4C5F44454641554C542673633D592677633D4E4F4E45267573743D61726475696E6F206D6B722031303130267374613D61726475696E6F206D6B72203130313026&searchHistory=%7B%22enabled%22%3Atrue%7D
https://uk.rs-online.com/web/p/processor-microcontroller-development-kits/1763647/?relevancy-data=636F3D3126696E3D4931384E53656172636847656E65726963266C753D656E266D6D3D6D61746368616C6C7061727469616C26706D3D5E2E2A2426706F3D31333326736E3D592673723D2673743D43415443485F414C4C5F44454641554C542673633D592677633D4E4F4E45267573743D61726475696E6F206D6B722031303130267374613D61726475696E6F206D6B72203130313026&searchHistory=%7B%22enabled%22%3Atrue%7D
https://uk.rs-online.com/web/p/processor-microcontroller-development-kits/1763647/?relevancy-data=636F3D3126696E3D4931384E53656172636847656E65726963266C753D656E266D6D3D6D61746368616C6C7061727469616C26706D3D5E2E2A2426706F3D31333326736E3D592673723D2673743D43415443485F414C4C5F44454641554C542673633D592677633D4E4F4E45267573743D61726475696E6F206D6B722031303130267374613D61726475696E6F206D6B72203130313026&searchHistory=%7B%22enabled%22%3Atrue%7D
https://uk.rs-online.com/web/p/processor-microcontroller-development-kits/1763647/?relevancy-data=636F3D3126696E3D4931384E53656172636847656E65726963266C753D656E266D6D3D6D61746368616C6C7061727469616C26706D3D5E2E2A2426706F3D31333326736E3D592673723D2673743D43415443485F414C4C5F44454641554C542673633D592677633D4E4F4E45267573743D61726475696E6F206D6B722031303130267374613D61726475696E6F206D6B72203130313026&searchHistory=%7B%22enabled%22%3Atrue%7D

Group 5 Imperial College London Final Report

[15] RS Components. Samsung ICR18650-26F. https://uk.rs-online.com/web/p/
speciality-size-rechargeable-batteries/7887261/.

[16] SparkFun. RockBLOCK 9603 - Iridium SatComm Module. https://www.sparkfun.com/
products/14498.

[17] The Pi Hut. Adafruit 2mm 10 pin Socket Headers. https://thepihut.com/products/
adafruit-2mm-10-pin-socket-headers-for-xbee-pack-of-2?variant=
27740416337¤cy=GBP&gclid=CjwKCAiAx_DwBRAfEiwA3vwZYnL7ed8gy_Ts_
5ltUgY9r88PILZJW9_3vc8y8yszsPWgg6fKetzc3hoC7X8QAvD_BwE.

[18] The Pi Hut. Adafruit Feather M0 WiFi. https://
thepihut.com/products/adafruit-feather-m0-wifi-atsamd21-
atwinc1500?variant=27740276881¤cy=GBP&gclid=
CjwKCAiAob3vBRAUEiwAIbs5TscN92XYGzY7aTMDzzjNZUbVHCWTQWfaKmbKEJt3Y0bebyGidZnN9BoCb4IQAvD_
BwE.

[19] The Pi Hut. NUZAMAS 3.5W 6V 600ma Mini Solar Panel. https://
thepihut.com/products/adafruit-rfm96w-lora-radio-transceiver-
breakout-433-mhz?variant=27740305809¤cy=GBP&gclid=
CjwKCAiAob3vBRAUEiwAIbs5Tg7ijHWkt2yrwgNDIqEwobwwp-GAkSFB4_s-
qOfI4dTLo7XXL2XyMhoCKR8QAvD_BwE.

[20] The Pi Hut. Raspberry Pi 3 Model B. https://thepihut.com/products/raspberry-
pi-3-model-b.

[21] The Telegraph. Father saw son and friend freeze to death on Norwegian cross-country
skiing trip. https://www.telegraph.co.uk/news/worldnews/1545404/Father-
saw-son-and-friend-freeze-to-death-on-Norwegian-cross-country-skiing-
trip.html.

[22] University of Hawaii at Manoa. New wireless communications system to serve remote and rural
areas. https://phys.org/news/2014-10-wireless-remote-rural-areas.html.

69

https://uk.rs-online.com/web/p/speciality-size-rechargeable-batteries/7887261/
https://uk.rs-online.com/web/p/speciality-size-rechargeable-batteries/7887261/
https://www.sparkfun.com/products/14498
https://www.sparkfun.com/products/14498
https://thepihut.com/products/adafruit-2mm-10-pin-socket-headers-for-xbee-pack-of-2?variant=27740416337¤cy=GBP&gclid=CjwKCAiAx_DwBRAfEiwA3vwZYnL7ed8gy_Ts_5ltUgY9r88PILZJW9_3vc8y8yszsPWgg6fKetzc3hoC7X8QAvD_BwE
https://thepihut.com/products/adafruit-2mm-10-pin-socket-headers-for-xbee-pack-of-2?variant=27740416337¤cy=GBP&gclid=CjwKCAiAx_DwBRAfEiwA3vwZYnL7ed8gy_Ts_5ltUgY9r88PILZJW9_3vc8y8yszsPWgg6fKetzc3hoC7X8QAvD_BwE
https://thepihut.com/products/adafruit-2mm-10-pin-socket-headers-for-xbee-pack-of-2?variant=27740416337¤cy=GBP&gclid=CjwKCAiAx_DwBRAfEiwA3vwZYnL7ed8gy_Ts_5ltUgY9r88PILZJW9_3vc8y8yszsPWgg6fKetzc3hoC7X8QAvD_BwE
https://thepihut.com/products/adafruit-2mm-10-pin-socket-headers-for-xbee-pack-of-2?variant=27740416337¤cy=GBP&gclid=CjwKCAiAx_DwBRAfEiwA3vwZYnL7ed8gy_Ts_5ltUgY9r88PILZJW9_3vc8y8yszsPWgg6fKetzc3hoC7X8QAvD_BwE
https://thepihut.com/products/adafruit-feather-m0-wifi-atsamd21-atwinc1500?variant=27740276881¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5TscN92XYGzY7aTMDzzjNZUbVHCWTQWfaKmbKEJt3Y0bebyGidZnN9BoCb4IQAvD_BwE
https://thepihut.com/products/adafruit-feather-m0-wifi-atsamd21-atwinc1500?variant=27740276881¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5TscN92XYGzY7aTMDzzjNZUbVHCWTQWfaKmbKEJt3Y0bebyGidZnN9BoCb4IQAvD_BwE
https://thepihut.com/products/adafruit-feather-m0-wifi-atsamd21-atwinc1500?variant=27740276881¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5TscN92XYGzY7aTMDzzjNZUbVHCWTQWfaKmbKEJt3Y0bebyGidZnN9BoCb4IQAvD_BwE
https://thepihut.com/products/adafruit-feather-m0-wifi-atsamd21-atwinc1500?variant=27740276881¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5TscN92XYGzY7aTMDzzjNZUbVHCWTQWfaKmbKEJt3Y0bebyGidZnN9BoCb4IQAvD_BwE
https://thepihut.com/products/adafruit-feather-m0-wifi-atsamd21-atwinc1500?variant=27740276881¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5TscN92XYGzY7aTMDzzjNZUbVHCWTQWfaKmbKEJt3Y0bebyGidZnN9BoCb4IQAvD_BwE
https://thepihut.com/products/adafruit-rfm96w-lora-radio-transceiver-breakout-433-mhz?variant=27740305809¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5Tg7ijHWkt2yrwgNDIqEwobwwp-GAkSFB4_s-qOfI4dTLo7XXL2XyMhoCKR8QAvD_BwE
https://thepihut.com/products/adafruit-rfm96w-lora-radio-transceiver-breakout-433-mhz?variant=27740305809¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5Tg7ijHWkt2yrwgNDIqEwobwwp-GAkSFB4_s-qOfI4dTLo7XXL2XyMhoCKR8QAvD_BwE
https://thepihut.com/products/adafruit-rfm96w-lora-radio-transceiver-breakout-433-mhz?variant=27740305809¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5Tg7ijHWkt2yrwgNDIqEwobwwp-GAkSFB4_s-qOfI4dTLo7XXL2XyMhoCKR8QAvD_BwE
https://thepihut.com/products/adafruit-rfm96w-lora-radio-transceiver-breakout-433-mhz?variant=27740305809¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5Tg7ijHWkt2yrwgNDIqEwobwwp-GAkSFB4_s-qOfI4dTLo7XXL2XyMhoCKR8QAvD_BwE
https://thepihut.com/products/adafruit-rfm96w-lora-radio-transceiver-breakout-433-mhz?variant=27740305809¤cy=GBP&gclid=CjwKCAiAob3vBRAUEiwAIbs5Tg7ijHWkt2yrwgNDIqEwobwwp-GAkSFB4_s-qOfI4dTLo7XXL2XyMhoCKR8QAvD_BwE
https://thepihut.com/products/raspberry-pi-3-model-b
https://thepihut.com/products/raspberry-pi-3-model-b
https://www.telegraph.co.uk/news/worldnews/1545404/Father-saw-son-and-friend-freeze-to-death-on-Norwegian-cross-country-skiing-trip.html
https://www.telegraph.co.uk/news/worldnews/1545404/Father-saw-son-and-friend-freeze-to-death-on-Norwegian-cross-country-skiing-trip.html
https://www.telegraph.co.uk/news/worldnews/1545404/Father-saw-son-and-friend-freeze-to-death-on-Norwegian-cross-country-skiing-trip.html
https://phys.org/news/2014-10-wireless-remote-rural-areas.html

	Introduction
	Problem Specification
	Competitor Analysis and Market Share

	Design Criteria
	Concept Designs and Selection
	Concept Development
	Client-Server Protocol
	Client Connect Protocol
	Message Transmission Protocol
	Network Update and Message Reception Protocol

	Internodal (Radio-to-Radio) Protocol
	Broadcast (Ping) Protocol
	Buffered Token System

	iOS Application
	User Registration
	Connection to the Node
	Exchanging Messages
	Real-time Map

	Hardware
	Assembly
	Enclosure

	Project Management
	Workflow and Division of Tasks
	Cost of the Project

	Extra Features of Our Product
	GPS Module
	Emergency Button
	Buzzer for Alert
	On-Off Button

	Future Work
	Direct connection with emergency services
	LCD for Battery Status
	Heart rate tracker
	Route Calculator Using GPS

	Conclusion
	Appendices
	Appendix A - Additional Protocols
	Node Entry Protocol
	Node Disconnect Protocol
	Client Entry Protocol
	Client Disconnect Protocol
	Message Reception Protocol
	Overcoming the Arduino Serial Buffer Limit
	GPS and Emergency Broadcast
	On-Off Device Handler

	Appendix B - Node Source Code
	Full Backend Code
	Buffered Token Implementation
	GPS Emergency Implementation

	Appendix C - iOS App Source Code
	AppDelegate.swift
	ChatsViewController.swift
	ConversationViewController.swift
	FirstLaunchViewController.swift
	MapViewController.swift
	LoginTextField.swift
	ParsedUser.swift
	User.swift

	Appendix C - Product Design Specification
	Appendix D - Gantt Chart

	References

